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TECHNICAL REPORT R-2

SLENDER-BODY THEORY BASED ON APPROXIMATE SOLUTION
OF THE TRANSONIC FLOW EQUATION

By Jonn R. SerrITER and ALBerTs Y. ALKSNE

SUMMARY

Approximate solutions of the nonlinear equations
of the small disturbance theory of transonic flow are
found for the pressure distribution on pointed slender
bodies of revolution for flows with free-stream Mach
number 1, and for flows that are either purely sub-
sonic or purely supersonic. These results are ob-
tained by application of a method based on local
linearization that was introduced recently in the
analysis of similar problems in two-dimensional
Sfows.  The theory is developed for bodies of arbitrary
shape, and specific results are given for cone-cylinders
and for parabolic-arc bodies at zero angle of attack.
All results are compared either with existing theo-
retical results or with experimental data.

INTRODUCTION

This paper is concerned with the prediction of
the pressure distribution on slender pointed bodies
of revolution in flight at zero angle of attack at
high subsonic Mach numbers, at low supersonic
Mach numbers, and at Mach numbers near 1.
The solution of such problems is of interest not
only because of the frequent use of bodies of revolu-
tion in practical applications but also becausc
knowledge of the acrodynamic properties of a
body of revolution in axisymmetric flow taken to-
gether with the transonic area rule and equivalence
rule described in references 1, 2, 3, and elsewhere
permits the ready caleulation of the aerodynamic
properties of a wide class of wings, bodies, wing-
body combinations, ete., having the same longi-
tudinal distribution of cross-scction area as the
body of revolution.

The analysis is based throughout on the small
disturbance theory of transonic flow., This the-
ory, at least as formulated in this paper and in

several earlier papers of the present authors, is not
restrictive in its range of applicability as might be
inferred from its name, but is equally applicable
to subsonic and supersonic flows, It is, moreover,
the simplest theory proposed to date that is
capable of yiclding reliable results throughout this
entire speed range. Difliculties arise in the solu-
tion of the equations of transonic flow theory,
however, because the governing partial differential
equation is nonlincar and of mixed elliptic-hyper-
bolic type if regions of subsonic and supersonic
flow both appear in a single flow ficld. Inasmuch
as the mathematical theory of such equations is
still in a rather early state of development and
methods have not yet been discovered for the
exact solution of such equations, the engineer is
forced to turn either to experiment or to approxi-
mate methods for the solution of practical prob-
lems. Of the various methods that have been
proposed for the approximate solution of the equa-
tions of transonic flow theory, the most successful
and also the most versatile method is that de-
scribed recently for two-dimensional flows in refer-
ence 4. 'This was demonstrated in reference 4 by
the presentation of results for a large number of
specific applications for which experimental and
other theoretical results were available for com-
parison. Additional results for both two-dimen-
sional and axisymmetric flows with free-stream
Mach number 1 are given in reference 5. The
latter account is brief, however, and it is the pur-
pose of the present paper to provide a more de-
tailed account of the extension and application to
axisymmetric flows of the method described origi-
nally in reference 4. Inasmuch as this method of
approximation is of somewhat novel character and
the mathematical basis for the procedure is only
incompletely understood, the results are again
1
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evaluated by extensive comparisons with experi-
mental results and also with other theoretical re-
sults whenever available.

PRINCIPAL SYMBOLS

parameter defined in equation (50)
Euler’s constant =0.577215665 .

. D
C,  pressure drag coefficient, GRS,

™

QR

pressure coefficient, (PL;—)I%
wf @

S

pressure drag

maximum diameter of body of revolution

interval between successive values of z in

numerical integration
M2 (H+D
U.

l length of body

M local Mach number

M, free-stream Mach number

P local static pressure

Pew free-stream static pressure

radius of body

area of body cross section, =R?

free-stream velocity

u,y  perturbation velocity components parallel
to z and r axes, respectively

Ug value of # obtained by solution of equation

-

ol

-

ol % B

(16)

uy  value of u obtained by solution of equation
(35)

up  value of u obtained by solution of equation
(47)

z,r  cylindrical coordinates where z extends in

the direction of the free-stream velocity

ratio of specific heats, 1.4 for air

difference between ‘‘predictor” and “cor-
rector’” for numerical integration (see
eqs. (23) and (24))

Ao 1—M_ *—ku

e M —14ku

D <

ou
Ap ka
Pe free-stream density of air
T thickness ratio, (;
¢ perturbation velocity potential
SUBSCRIPTS
er values associated with critieal Mach num-

ber

) values associated with incompressible flow
or with M_,=0
m values associasted with maximum diameter
~ of body
z,r  differentiation with respect to the variable

in question

FUNDAMENTAL EQUATIONS AND BOUNDARY
CONDITIONS

STATEMENT OF PROBLEM

Consider the steady axisymmetric flow of an
inviscid compressible gas past an arbitrary slender
pointed body of revolution, and introduce cylindri-
cal coordinates x and r with the z axis parallel to
the direction of the free stream, as illustrated in

Fiaure 1. -View of body and coordinate system.

figure 1. Let the free-stream velocity and density
be U, and p., the perturbation potential be ¢,
and the perturbation velocity components parallel
to the z and r axes be ¢, or u, and ¢, or v, where
thesubscriptindicatesdifferentiation. Thebound-
ary conditions require that the perturbation veloci-
ties vanish atinfinity, and that the flow be tangential
to the body surface. The first condition indicates
that ¢ is constant at infinity. The second condi-
tion can be approximated for smooth slender

hodies by

. dR_U. dS
(ren)ro=UR Ir = %r dr ey

where R and S represent, respectively, the ordi-
nates and cross-scction area of the body. The
relation between the pressure coefficient €, and
the perturbation velocity components is likewise
approximated and reduces to the following form
for points near the body surface:

P Pe___o P O
OD—P,F& [ 2 ? U, U.? @)
2 w

The corresponding expression for points on the
body surface is

g (LY

Cr= AR (3)
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These relations are familiar from linear theory but
apply equally for transonic theory. The differ-
ential equation for ¢ is not the same as in linear
theory, however, but is

M. (y+1)

(1 - -11 ) Pzz + o+ Crr= 7 CrPrz = kﬁax‘Pzz

)

where MM, is the Mach number of the undisturbed
flow and v is the ratio of specific heats (1.4 for air).
It is useful to note that the total coeflicient of ¢,,
that is, 1—M.*—ke,, corresponds in the present
approximation to 1—M? where M is the local
Mach number.

In transonic and supersonic flows, it is also
necessary, in general, to provide appropriate
relations for the discontinuous changes in velocity
that occur at shock surfaces. The necessary
equations, when simplified to the form consistent
with the approximations of transonic flow theory,
reduce to

(1 _J[m 2) (Ua“‘uo)2+ (‘Da——vb)z
2
=A[m (y+1 ’ua‘z*‘uo) (Ug— 1) ?

U,
Pa== P>
ua>ub

where the subscripts @ and b refer to the values
immediately upstream and downstream of the
shock surfaces.

Solutions for problems of transonic flow theory
must satisfy not only equations (1) through (5),
but certain additional requirements concerning
the regions of influence and dependence associated
with subsonic and supersonic flows. Although a
detailed discussion of these conditions is com-
plicated by the presence of both subsonic and
supersonic flows in a single flow field, the principal
conclusion is that the usual conditions apply
locally and must be satisfied in order to obtain
solutions that are physically realistic (sce ref. 6,
pp- 448-453, for an elementary discussion of this
matter).

(®)

SIMILARITY RULES

The equations for axisymmetric transonic flow
enumerated above contain & similarity rule that
associates the pressure fields of affinely related
families of bodies. Various members of such a
family of bodies may be of different length 7 and

thickness ratio 7, but must have ordinates given

" by an expression of the form

W)

where f is the same function of #/l for all members
of a single family. If the subscripts 1 and 2 refer
to different members of a given family, the simi-
larity rule states that the pressure coefficients (%
at corresponding points defined by

re M E D) £y,
12_\/ J[m,z('Y‘z‘f‘l) 7211

Iy &

Lol @

are related according to

(o

provided the free-stream Mach numbers of the
two flows are in accordance with the following
expression:

—M,, ©
:uwz (’Yz+1) ( ) J[m, (‘Yl+1) ’

The similarity rule given above cannot be used
directly to relate the surface pressures on bodies
having different thickness ratios because the
ordinates of related bodies given by equation (6)
do not conform with the relationship for cor-
responding points given by equation (7). Thus
the r coordinate of a point in the vicinity of body
2 that corresponds to a point on the surface of
body 1 is given by

(10)

7'2_ le] (‘Yl+1 )
R, AI@, (y2+1) \72

Oswatitsch and Berndt have shown (ref. 7)
that a similarity rule can be established for the
surface pressures on affinely related bodies of
revolution if it is assumed that the longitudinal
perturbation velocity component % is given by
an expression of the form

L A28
2 d.r21 n r4-g(x) (1)

This relation permits
in pressure

in the vicinity of the body.
the calculation of the difference
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between the point », and the surface of body 2.
The similarity rule for the surface pressures follows
immediately. Tt states that

72\*
e=(7)

1S, M2w+n
e [( Ve ] 12

provided still that the free-stream Mach numbers
are in accordance with equation (9). A similarity
rule for drag D can be obtained by combination
of equation (12) and the following expression for
the drag cocfficient Cp:

D
Poyr 2
2 l OQS"@

(, JS

OD:
Sm. [¢] 7

dr (13

It is

( ) [F1) Sl D 7'1\1[m1 ("/1‘!‘1)1! (14)
' 2rSa \‘J[ (v t+1)

where the prime indicates differentiation with

Tespect to ¥ and S, refers to the maximum cross-

scetion area. This relation simplifies if the body

is either pointed or eylindrical at the base, since

then S’(I) is zero.

Tt should be obscrved that the relation given
by equation (11) follows as a direct consequence
of the assumption implicit in the use of the
slender-body boundary condition given by cqua-
tion (1) that at any given z the product 7¢, is
constant between the z axis and points in the
vicinity of the body surface. The error intro-
duced into the analysis by the use of equation
(11) is thus of the same order of magnitude as
that already present in the fundamental relations
of the small disturbance theory of transonic flow
enumerated in equations (1) through (5). It is
important to recognize, however, that equations
(11), (12), and (14) must be regarded as approxi-
mate relations within the framework of analysis
specified by equations (1) through (5), and that
exact solutions of the latter equations will not
obey the similarity rules perfectly. This situa-
tion may be contrasted with that for the similarity
rule for airfoils or for wings of finite span for
which the similarity rules are exact relations

within the framework of the small disturbance
theory for transonic flow.

A much stronger limitation that uaffects the
general applicability of the similarity rules for
axisymmetric flows, and to which attention does
not appear to have been directed previously, is
concerned with the regions of influence and
dependence. This limitation arises because the
extent and even the existence of a region of
supersonic flow imbedded in a subsonic flow, or
of a subsonic region imbedded in a supersonic
flow, are not determined by the value of the simi-
larity parameter (M.2—1)/[M2(y+1)77] alone,
as in flows around thin wings, but by the values
for the Mach number and thickness ratio indi-
vidually. These effects are small at Mach
numbers near unity for which the sonic line is
inclined at a steep angle to the body surface,
but become large as the inclination of the sonic
line approaches that of the body surface at Mach
numbers near the lower and upper critical.  The
latter Mach numbers are defined, respectively,
as the lowest subsonic Mach number and the
highest supersonic Mach number at which sonie
velocity (e, w/Ua={(1—M/)/[M2y+1)]) oc-
curs at the surface of the body. Consider, as
an example of a case for which these effects are
large, that results are available for a certain body
at the lower critical Mach number and that it
is desired to use the similarity rule to determine
the flow around an affinely related body that is
more slender than the first body. The flow past
the second body will be found to contain a super-
sonic region, but since there are no shock waves
in the flow around the first body there will be no
shock waves indicated in the flow around the sec-
ond body. If, on the other hand, results are
available for a body at a Mach number somewhat
greater than the lower critical, and the flow con-
tains & shock wave, application of the similarity
rule to compute the flow around an affinely
related body of sufficiently greater thickness that
the flow is purely subsonic leads to the completely
unacceptable result that there are discontinuities
in a purcly subsonic flow. It is evident that
cqually unacceptable results are indicated by the
similarity rule for drag, and that related diffi-
culties with both the details of the flow field
and the drag are encountered at Mach numbers
in the vicinity of the upper critical.

The properties of the similarity rule discussed
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in, the preceding paragraph require the imposi-
tion, for free-stream Mach numbers other than 1,
of certain rather definite restrictions on the values
for 7, or for M., for which the surface pressures
and drag are related by equations (12) and (14).
It is clear such a restriction is necessary because
the similarity rules contain no mechanism for the
subtraction or addition of shock waves and the
associated contributions to drag, as there should
be in any proper relationship between suberitical
and supercritical flows. These and related points
will be examined further in the course of the
following discussion.

The remainder of this paper is concerned with
the presentation of a method for the approximate
solution of the problem described by equations (1)
through (5), application to a number of specific
bodies, and comparison with existing theoretical
and experimental results. Purely subsonic flows
arc discussed first, purely supersonic flows next,
and flows with free-stream Mach number near
unity are treated last.

SUBSONIC FLOWS

APPROXIMATE SOLUTION OF EQUATIONS

It is convenient in the analysis of subsonic
flows to introduce the symbol Az as an abbrevi-
ation for the coefficient of ¢,

—M =M 1M k>0 (15)
and rewrite equation (4) in the form
1
)\E‘P1z+;¢r+¢rr20 (16)

It i1s now assumed that Az is neither zero nor
infinite and that it varies sufficiently slowly that
its derivatives can be disregarded so that it can be
considered, temporarily, as a constant.
stage, the problem is equivalent to that encoun-
tered in linearized theory of subsonic flow around
slender bodies of revolution (it is identical if Az is
replaced by 1—W.2). The solution for ¢ is thus
well known (see, e.g., ref. 8, p. 188) and is given by

Uo (P S'®de (17)
oy

CE—
where the subscript £ denotes that the solution
Tefers to cquation (16) of elliptic type with Ag
constant. The corresponding expression for ug

At this

follows immediately by differentiation. It can be
approximated for points on the surface of a smooth
slender body by

ug _ S"(x) In AsS

'S (@) =S ®)
g “

Frall— n+ ,

g

-  Ar

(18)

where the subseript ¢ refers to the values for in-
compressible flow, or for 3/,=0. Differentiation
yields

dug/lU,) S(x)'’ d{u, /U )
dr ~  4r In gt dx (19)

If, now, 1—M_2—ku is restored in place of Ag so
that, in effect, the local value for Az is used at each
point, and the subseript E on u is dropped, equa-
tion (19) becomes

(Z(u/Uw) S’ (x)
dr 4

d(u /L

In (1 =M. )+ =) (20)

Equation (20) is a nonlinear ordinary differential
cquation for # on the body surface. This equation
is of first order and the necessary value for the
constant of integration is determined by assuming
that « cquals uz at the point on the forebody
where S8’/(x) vanishes, since uz is indicated by
equation (18) to be independent of Az and hence
of Mach number at this point. Thus

u=1u; where S”{x)=0 (21)
The calculation of « on the surface of a body of
revolution of specified shape is thus reduced to
the solution of an equation of the form

ZwﬁF&u) ©22)

which can be solved, at least approximately, by
application of any of a number of standard
techniques. The corresponding values for the
surface pressures follow directly upon insertion of
the results into equation (3).

The particular method used to calculate the
results presented in the following scction of this
report is that of Milne (vef. 9, p. 135). It is a
step-by-step process in which the values of the
dependent variable % are calculated one after the
other for a sequence of equally spaced values of
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the independent variable r. The successive
values of r are denoted by =z, x,, z;, . . ., the
interval is denoted by %, and the corresponding
values of u are denoted by ug, uy, %, . . . . Dif-
ferentiation with respect to z is indicated by a
prime. The actual calculations proceed by alter-
nate use of the formula

un“:un-s+%h(2un’—un-l’+2uu—z’) (23)

as a “predictor” and Simpson’s rule

un-rl Uy I+ h("n+l +4u +un 1) (24)

as a ‘“‘corrector.”” Both cxpressions are approxi-
mate, but the error in the result given by the
corrector is roughly equal to A/29 when A is the
difference between the regults given by the two
formulas. It is assumed that the value glven by
equation (24) is correct so long as A/29 is not
significant. Abrupt fluctuations in the values
of A indicate the presence of errors and the calcula-
tions should be checked. If the error A/29
proves {o be larger than the desired accuracy
permits, it is necessary to shorten the interval 4.
Cutting the interval in half will divide the error
by about 32.

The computation is started at the point where
S’/ (x) is zero and requires four consecutive known
values for . One of these is given by equation
(21), the remaining three are determined by use
of the first six terms of a Taylor’s series for u about
the point where S’/(z) vanishes. This requires
evaluation of the first five derivatives of u with
respect to r at the point where S’/(x) vanishes.
The first of these is calculated directly by uso of
equations (20) and (21). The remaining four
are calculated similarly by use of corresponding
expressions derived from equation (20) by succes-
sive differentiation with respect to .

APPLICATION TO PARABOLIC-ARC BODY

As an application of the foregoing results,
consider subsonic flow past a parabolic-arc body
of revolution of length ! and maximum diameter
d. The ordinates R of this body are given by

G e

RBR=27]

where r represents the thickness ration d/I. The
variation of cross-section area S with 2 is thus

-OT e

and the points at which S’ (z) vanishes are located

at
l /3 .
f.s"=o=§ (1 i‘3—) @27

The expression for u at zero Mach number can
be determined directly upon substitution of the
above relation for S(x) into equation (18) and

S=rR*=4nrr?

carrying out the indicated operations. The result
can be expressed simply as
S [3+1 e (28)

where R(x) and S(z) now refer to the radius and
cross-section area of a parabolic-arc body of
revolution, and are defined as functions of x by
equations (25) and (26). Substitution of equation
(28) into equation (20) leads to the following
ordinary nonlinear differential equation of first
order for u on the surface of a parabolic-arc body
of revolution in subsonic flow.

d (wUs) _ S”’
Tdr

ln (1—M_*—Fku)

A ] e

The constant of integration is evaluated by im-
posing the condition derived from equations (21),
(27), and (28) that

l \fﬁ)
g1 (30)

The problem described by cquations (26), (29),
and (30) has been solved numerically for several
suberitical Mach numbers for a body of fineness
ratio I/d of 10. The resulting values of »/U. are
tabulated in table I together with the values for
the error term A/29. Results are given for only
the front half of the body since the solution is
symmetric around the center of the body, and the
calculated values at z and I—z should be identical.
It can be seen from inspection of the values for
A/29 that the size of the interval A, which was
maintained at 2 percent of the body length
throughout all of the calculations, is sufficiently

u=0 at r=
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small that inaccuracies incurred in the numerical
solution are negligible.

The corresponding values for C, on the body
surface can be calculated directly from the values
for u/U. by means of equation (3). The resulting
values are tabulated in table I, and are shown
graphically in figure 2. The corresponding re-
sults indicated by lincarized compressible flow
theory are shown in figure 3.

The latter results are calculated by means of
the following expression derived from equations
(3), (18), and (25) with Az replaced by 1—244,%

_ s [ES Tt A
= <3+1n‘——~2—l—7>—1?2 (31)

27

Present results
My
— 935
I —— 934
—————— 930
—-— 920
—--— 900
T —---— 850
——- 800
——-- 700

.20

.24

28— g 3 4 5

x/1

FraurRE 2.—Pressure distributions on a parabolic-are body
of revolution of fineness ratio 10 at suberitical Mach
numbers as indicated by present theory.

501377—58——2

It can be seen that the values for C, obtained
by application of the present theory are qualita-
tively similar to those indicated by linear theory,
although somewhat more negative at all points.
This trend is similar to that shown in reference 4
to result upon application of the same procedures
to two-dimensional subsonic flows.

The results presented in table I and figures 2
and 3 are repeated in figure 4 together with the
corresponding results indicated by the second-
order approximation to the solution of the equa-
tions of transonic flow theory for flow past a
slender parabolic-arc body of revolution. The

-08

-04

.08
12 -1
Ist order, {eq. {31))
Mz

16 4 —— 935
------ 930
—-— 920
—-— .900

20 S S T 850
——- 800
——- 700
—— 0

.24 {

285 N 2 3 4 5

xsl

Frcure 3.—Pressure distributions on a parabolic-arc body
of revolution of fineness ratio 10 at subcritical Mach
numbers as indicated by linear theory.
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T ¥

Mg=85
- R e
-04 i 7 I
| i ___._
0

16 Present results
— — st order, leq.(31))
ooH. 2nd order, {eq.(32)) |
' o Experiment, ref {11}
2af- L
J (a)
Y e T I = .
Cp

2 —r—-—1

Me=92 -
_08% R

o /
B
0]

(8) M, =0.70
(e) M, =0.92

(b) M,=0.80
(f) M,=0.93

() M. =0.85
() M, ~0.934

(d) M, =0.90
(h) M, =0.935

Figure 4.—Pressure distributions on a parabolic-are body of revolution of fineness ratio 10 at suberitical Mach numbers
as indicated by present theory, by other theoretieal results, and by experiment.

latter results are calculated by use of the expres-

sion
RN 47 /RN
(T) T 5 ):l

(32)

2
Cpim VD) [y )

1-M,F

which is obtained from a corresponding result
given by Van Dyke in reference 10. The ex-
pression given in reference 10 differs from equation

(32) in that the quantity M .*(y+1) is replaced
by v+1. This change, which is associated with
a corresponding difference in the cocfficient &
of the nonlincar term of equation (4), has very
little effect on the values for €, caleulated by
means of cquation (32) since the quantity involved
is absent in the first-order term and first appears
in the much smaller contribution of the second-
order term. The consequences of such a change
in the quantity represented by & become of con-
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siderably greater significance in the caleulation of
transonic flows and in the determination of the
critical Mach number, however, because the mag-
nitude of /U, associated with the occurrence of
sonic velocity is inversely proportional to k. As
an cxample, the critical value for the pressure
coefficient (7, associated with the free-stream
Mach number of 0.85 and zero ¢, is —0.320 if
M2 (v+1) 1s used for kU, and —0.2311f v+ 1 is
used.  Since the exact value indicated by isen-
tropic flow theory is —0.302, it follows that the
formulation of transonic flow theory in which
kU, is equal to M 2(y+1) is about four times as
accurate in this respect as the formulation in
which 2T, is equal to v+1.

Experimental data from reference 11 by Taylor

and McDevitt are also included in this figure for,

all suberitical Mach numbers for which results
were measured. The tests were conducted in the
Ames 14-foot transonic wind tunnel with a model
that consists of approximately the forward 85 per-
cent of a parabolic-are body of revolution of fine-
ness ratio 10 and length 6.67 feet. The model
was supported from the rear by a circular eylinder
having a diameter somewhat smaller than that of
the base of the body. No corrections have been
applied to the data to take account of either wind-
tunnel wall interference or the abbreviated length
of the body.

It can be seen from the foregoing comparisons
that the principal differences between the pressure
distribution indicated by linear theory and by
higher approximations occur near the middle of
the body at Mach numbers near the critical. In-
sight into the magnitude of these cffects can be
had by examination of figure 5 which shows the
variation of 7, with M. al the midpoint of a

o — U
—— Present results (
— — st order, (eq (31}
----- 2nd = leq (32)
-A8F —-— gt 33
G —~-—2nd « (eq ) ,
4 ©  Experiment, ref(11} ,/
/,/
_.!o P L A -
/_’__:L—'/ . ==
_05 - -
Parabolic arc, ! /g-10
o i
70 .75 80 85 90 .95 100

Mep

FrotrE 5.—Variation of pressure coefficient with Mach
number at the midpoint of a parabolic-are body as in-
dicated by present theory, by experiment, and by two
different methods of successive approximation to the
transonic equation.

parabolic-arc body of revolution of fineness ratio
10.  Also included in this figure is a line indicating
the variation of the critical pressure coefficient
associated with the occurrence of sonic velocity at
a point, such as the midpoint of a parabolic-are
body, at which dR/dx is zero. The present results
are included in this figure together with experi-
mental results from reference 11, theoretical re-
sults indicated by equations (31) and (32), and
by the first two steps of an alternative method of
successive approximation described in the appen-
dix of reference 12 that involves the solution of
quadratic rather than linear equations at each step
of the iteration process. The latter values for C,
on the surface of a body of revolution are calcu-
lated by application of the following expression
in which the subseript N refers to the results indi-
cated by the quadratic method and » refers to the
nth approximation using the classical method of
sucecessive approximation:

(IP) —2(1—M, 2)(1_\/{1+M Byt 1)

TM (v 1) 2(1—M %
in which

dR\?
07’"~|=o=_ dr
Valuaes for (7, _, and €, _, can be calculated for

parabolic-arc bodies by application of equations
(31) and (32). It 1s evident from the form of
equation (33) that the values for (', approach
those for (f; in the limit of an infinite number of
iteration steps, provided, of course, that the series

(e (B} 050 0, —c,) o9

expression for O, converges. If only afinite num-
ber of terms are considered, as must be done in
any practical application of the method of succes-
sive approximation, the approximate values for
the pressure indicated by €, and C,, are different.
The utility of considering the two sets ofresults
simultaneously resides in the fact that the values
indicated by ', tend to underestimate the true
variation of the peak negative pressure with Mach
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number, whereas those indicated by €, tend to

overestimate the true variation. The true varia-
tion is thus bounded within well defined limits.
It can be seen from examination of figure 5 that
the tesults of the present numerical calculations
fall within or very close to these limits. Similar
applications of the quadratic method of successive
approximations to two-dimensional flows can be
found in references 4 and 13.

The problem described by equations (26), (29),
and (30) has also been solved numerically for sev-
cral suberitical Mach numbers for a parabolic-arc
body of revolution of fineness ratio 6. The result-
ing values for u/U., 4/29, and C, are tabulated in
Table II. The pressure distributions are also illus-
trated graphically in figure 6.  The corresponding
results indicated by linearized compressible flow

_-3W
1/d-6
I AN S )
4;" o —— T —
% T
/‘;”"/" P e St
- —
,//;/’————?
/
0 3
/
:/" \1
71 l/
| iy —
/s
I‘/‘
/I’
2
/
! Present resulls
S 1 He
! — B8
I —— 87
(5 2 .85
4 ‘. —_— -80 -
—--— 70
- 0
5 T I -—
% 2 3 4 5
x/1

FiGurge 6.-—-Pressure distributions on a parabolic-arc
body of revolution of fineness ratio 6 at subcritical Mach
numbers as indieated by present theory.

theory are shown in figure 7. These results are
repeated in figure 8 together with the correspond-
ing theoretical results indicated by the second-
order approximation given by equation (32), and
the experimental results of Drougge from refer-
ence 14. The latter results were obtained from
tests with a model that consists of the forward 5/6
of a parabolic-arc body of revolution of fineness
ratio 6. It was supported in the wind tunnel by
a circular cylinder of the same diameter as the
base of the body. Although no corrections have
been applied for the effects of the abbreviated
length of the body, it is clear that the values for
(', on a complete body should be somewhat more
negative than those on the partial body tested by
Drougge. Theoretical considerations indicate that
the magnitude of this effect is about 0.007 at the

S
_‘2 -
- | —
Cp >
0
/ _O
| S——a
2 7’4
Ist order, (eq. (31))
| Mo —
3 — 88
—— 87
----- 85
i —— 8 _
4 s
——-= 0
5
5 ol 2 3 4 5
x/1

Ficure 7.- -Pressure distributions on a parabolic-arc
body of revolution of fineness ratio 6 at subcritical Mach
numbers as indicated by linear theory.
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Present results
_ — —lIst order, {eq.(31))
———-2nd order, {eq.(32))
O Experiment, {ref. (I4))

(b} {c)

x/1
(a) M,=0.70 (b) M_,=0.80 (c) M_,=0.85 (d) M,=0.87 (e) M,=0.88

Figure 8 —DPressure distributions on a parabolic-arc body of revolution of fineness ratio 6 at subcritical Mach numbers
as indicated by present theory, by other theoretical results, and by experiment.
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middle of the body, and about 0.001 at the nose
of the body. A more detailed investigation of this
matter can be found in reference 10 by Van Dyke.

Two conclusions emerge from a comparison
of the theoretical and experimental results illus-
trated in figure 8. They are that slender-body
theory is capable of yielding reliable results for
subsonic flow past a parabolic-arc body of revo-
lution of fineness ratio 6, and that the simple
result pxovnlod by linearized compressible flow
theory remains a useful approximation for all
Mach numbers up to the immediate vicinity
of the eritical

Theoretical pressure distributions for a para-
bolic-are body of revolution of fineness ratio 6
could also have been calculated, and with less
effort, by application of the similarity rule given
by cquations (9) and (12) to the results already
caleulated for the parabohc arc body of fineness
ratio 10. As noted in the course of the preceding
discussion of the similarity rule, the results
obtained by application of equations (9) and (12)
do not agree perfectly with those obtained by
direct ('ztlculatlons Tt is the purpose of the
present discussion to illustrate the magnitude
of these differences by an examination of the
specific case mentioned above. TFigure 9 shows

T -4
Direct calculation

______ Similority calculations from 1/d-10

o Exper;menl'_(ef(r-'l) I _\ - R {
106 %A_ SR B

/

o

P N :
} F=500) =™ %,
-------- N W ey ;
i _ _ -

[
200 i
r1° ’
S 15
[ AR h— === S5 I, SEREN
=}
I - — 2
—_— - - 3
025 H
R
85 90 95 10C

60 65 .70 75 .80

TiatrE 9.—Variation of pressure cocfficient with Mach
pumber at various stations on a parabolie-are body of
fineness rutio 6 as obtained by direct caleulations using
the present theory, by use of the similarity rule, and by
experiment.

the variation of €, with {rec-stream Mach number
at several stations along the length of the body
as indicated by the direct calculations for the
body of fineness ratio 6, by application of the
similarity rules together with the results calcu-
Iated for the body of fineness ratio 10, and by the
experimental results of Drougge (ref. 14) for a
body of fineness ratio 6. The stations for which
results are included on this graph are selected
so as to coincide with the location of the orifices
in the model tested by Drougge. It can be scen
that the results obtained by application of the
similarity rule are very close to those obtained
by direct calculation over substantial portions of
the body, but that important differences occur in
the vicinity of the middle of the body as the
free-stream Mach number approaches the critical
and the local velocities approach the speed of
sound. Perhaps the most striking difference

‘concerns the free-stream Mach numbers at which

the two sets of theoretical results terminate.
Tn the direct calculation, the results terminate
with the attainment of the critical Mach number,
whereas the results obtained by application of
the similarity rule terminate at Mach numbers
well below the critical. If it is presumed that
results appropriate for supercritical Mach num-
bers would contain shock waves, and that the
bodies would experience a pressure drag, it is
clear that the results obtained by application of
the similarity rules would be in serious error
since, in the present example, such effects would
begin to appear at a Mach number of about
0.845 rather than about 0.88. It is evident,
furthermore, that the magnitude of these effects
would be less if the fineness ratios of the two
bodies were more nearly the same, but greater
if the fineness ratios were more different, and of
opposite sign if the similarity rule were applied
to calculate the pressure distribution on a thin

body using known results for a thicker body-.

SUPERSONIC FLOWS
APPROXIMATE SOLUTION OF EQUATIONS

The procedure deseribed in the preceding sec-
tion will now be applied to the analysis of super-
sonic flows. Thus, introduce the symbol Ay as
an abbreviation for the coefficient of ¢,

2‘y—L1

=M —1+M " =M —1+ku>0

(34)
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and rewrite equation (4) as follows:

1
)‘H‘Pu_; Or—

=0 (35)
If it is again assumed that A4 is neither zero nor
infinite and that it varies sufficiently slowly that
its derivatives can be disregarded, the problem
is equivalent to that encountered in linearized
supersonic slender-body theory. The solution
for ¢ for points on the surface of a smooth slender
pointed body of revolution is given by (sece,
e.g., ref. 8 p. 190)

UL (VS (3)ds
o Neanp= v

where the subscript 77 denotes that the solution
refers to equation (35) of hyperbolic type with
Az constant. The corresponding expression for
uy can be approximated for points on the surface
of a smooth slender body by

ug 8" (), )\HS’+ P8 () —=8""(®) dt

U, R 0 r—¢&

U, 4r
ST I Ayt fula) @7

Sl’

where f4(z) can be interpreted as the expression
for u/U. indicated by linear theory for a free-

stream Mach number of 2. Differentiation
yields
d(unfUs) _S""" (x) (17.11(1')
dz 4w In A (38)

If, in the same manner as described for the sub-
sonic case, M.>—14ku is restored in place of
My so that, in effeet, the local value for )y is
used at cach point and the subscript I7 on u is
dropped, equation (38) becomes

du/U,) S (x) In

i T (W21 4k )+‘]f”(”) 39)

As in the previous discussion of subsonic flows,
the resulting relation for w on the body surface is
a nonlinear ordinary differential equation of the
first order, and it is necessary to supply a value
for 4 at some point along the body in order to
evaluate the constant of integration. Perhaps
the most logical method for the evaluation of this

constant for flows that are supersonic everywhere
is to use the value for u at =0 that is provided
by the solution of the equations of transonic flow
theory for flow around a cone tangent to the nose
of the body. Practical difficulties arise in the
application of this procedure, however, because
first, the solution for the cone cannot be written
in & simple form, and second, the numerical tables
and charts in which the results of numerous specific
cases are summarized are generally inadequate for
the present purposes because of the lack of suffi-
cient calculated results for slender bodics for low
supersonic Mach numbers.  These comments
apply not only to the fairly recent results of
Oswatitsch and Sjodin (ref. 15) and Shen (ref. 16)
based on the simplified equations of transonic flow
theory, but also to the older and more extensive
results based on the complete equations of com-
pressible flow theory and presented in references
17 and 18. An alternative method that avoids
this difficulty and parallels the procedures em-
ployed for the approximate solutions of other
problems in this paper and in reference 4 is to
evaluate the constant by assuming that % equals
ug at the point on the forecbody where §"’(z)
vanishes, since uy is independent of Ay and hence
of Mach number at this point; thus

E—i"—:f,, where S’/ (x)=0 (40)

3

The calculation of % on the surface of a body of
revolution of specified shape In supersonic flow
is thus reduced to the solution of an ordinary
differential equation of the form

g—u—F(x ) (41)

subject to the additional condition given by equa-
tion (40). This problem is identical in form to
that cncountered at the corresponding point in
the discussion of subsonic flows, and can be solved
numerically in a similar manner. Once the values
for w on the surface of the body are determined,
the corresponding values of €, follow dircetly
upon insertion of the results into cquation (3).

APPLICATION TO PARABOLIC-ARC BODY

As an application of the foregoing theory, con-
sider supersonic flow past a parabolic-arc body of
revolution of length 7 and maximum diameter d.
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The expressions for the ordinates R, the cross-
section arca S, and the location of the points at
which 87’ {z) vanishes are given by equations (25),
(26), and (27). Substitution of these relations
into equations (37) and (39) leads dir ectly to the
following differential equation for u on the surface
of a parabolic-are body of revolution in super-
sonic flow:

Qo) 570 g2~ 1 k)

T dr
+({£{S"1,l[ <1_ )]—1272{(2—3 %)} (42)

The constant of integration is evaluated by im-
posing the condition derived from equations (26),
(27), and (40) that

[ l /3
=23 at r:g(-—%”) (43)

The problem described by equations (26), (42),
and (43) has been solved numerically, by applica-
tion of Milne’s method described in the preceding
section on subsonic flows, for several supersonic
Mach numbers for a body of fineness ratio I/d of
10. The resulting values for u, A/29, and C, are
tabulated in table TIT. The results for (7, are
also shown graphically in figure 10. The corre-
sponding results indicated by linearized compress-
sible flow theory are shown in figure 11. The

Present resuits |

N
A
r

Fioure 10.—Pressure distributions on a parabolic-are
body of revolution of fineness ratio 10 at Mach numbers
above the upper critical as indicated by present theory.

latter results are calculated by use of the following
expression derived from equations (3), (26), and
(37) with A4 replaced by M. *—1.

S’I
= [\Mmz—lr 1--)]

42472 % (2—3 5;)-1?’2 (44)

The results presented in table I1I and figures
10 and 11 are repeated in figure 12 together with
the corresponding results indicated by the follow-
ing expression given by Van Dyke in reference 10
for the second-order approximation to the solu-
tion of the equations of transonic flow theory for
slender parabolic-arc bodies of revolution:

42(7+1) 4[ 17( ) L R’)*:l
(45)

Cp,=Ch, + Mo
As noted previously in the discussion of subsonic
flows, the quantity y+1 that appears in the result
given by Van Dyke has been replaced by
M_2(y+1) to conform with the present formula-
tion of the equations of transonic flow theory.
It can be seen upon examination of figures 10,
11, and 12 that the results obtained by applica-
tion of the present theory arc again qualitatively
similar to those indicated by first- and second-
order theories and that the main differences occur

-12
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¥icure [1.—Pressure distributions on a parabolic-arc
body of revolution of fineness ratio 10 at Mach numbers
above the upper critical as indicated by linear theory.
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Fiaure 12.—Pressure distributions on a parabolic-arc body of revolution of fincness ratio 10 at Mach numbers above the
upper critical as indicated by present theory and by other theoretical results.
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in the regions where the local Mach number ap-
proaches unity. The most prominent difference
occurs near the tail of the bodies where the first-
and second-order theories indicate that the flow is
subsonie.

This result is contradictory to the basic assump-
tion that the flow is supersonic, but it is never-
theless qualitatively correct, since more ecxact
investigations also indicate that the flow is sub-
sonie at the tail of a body of revolution that termi-
nates like a cone.  Tlere is no assurance that the
smooth deceleration through sonic velocity indi-
cated by the first- and second-order theories is
correct, however, and further investigation appears
necessary for the clarification of this detail. On
the other hand, the results indicated by the present
theory terminate when w» reaches the value
(M= 1)/k associated with the occurrence of sonic
veloeity. When this situation oceurs, the inequal-
ity specified by equation (34) is no longer satisfied,
the argument of the logarithmic term of equation
(39) vanishes, and du/dx increases logarithmically
{o infinity. Tf the solution for the remainder of
the body is required, it is necessary to consider the
nature of the shock wave that must be present in
the vieinity of the rear of the body and to use
cquations that are not restricted in application to
supersonic flows. As a result, further discussion of
this matler is deferred to the subsequent section
on flows with free-stream Mach number near 1.
In any case, the entire question is of rather an
academic nature for parabolic-are bodies in the
AMach number range considered in the preceding
discussion because (a) the region involved is only
a small fraction of the body length, (b) significant
viscous cffects are generally present in this region,
and (c¢) the information is frequently not needed
because the bodies used in practice or investigated
in the wind tunnel are cut off forward of this
region.

No experimental pressure distributions for a
parabolic-are body of revolution of fineness ratio
10 arc available for comparison with the theoreti-
cal results shown in figure 12. The maximum
test Mach number of the investigation reported
in reference 11 is 1.20, wherecas the lowest Mach
number for which the present theoretical results
indicate supersonic flow at the nose is 1.21, The
comparison with first- and second-order theory
should suffice, however, for an estimate of the ac-
curacy of the present results for supersonic flows.

FLOWS WITH FREE-STREAM MACH NUMBER
NEAR 1

APPROXIMATE SOLUTION OF EQUATIONS

The analyses of subsonic and supersonic flows
given in the preceding sections have started by
introduction of a symbol X for the coefficient of
o and the assumptions that N is neither zero nor
infinite and that it varies sufficiently slowly that
it can be regarded as a constant in the early stages
of the analysis. Since the results so obtained
terminate if A=0, or physically if a point is ap-
proached at which the velocity is sonic, it is evi-
dent that additional considerations are necessary
to permit the study of flows with free-stream Mach
number near 1 in which the acceleration from sub-
sonic to supersonic velocities is an essential feature.

The technigue adopted is to introduce the sym-
bol A» as an abbreviation for the coeflicient of
¢, rather than ¢, thus

ae= 2 1 S (46)

whenee equation (4) may be written as follows:
1 .
7 ‘Pr‘E‘(ﬁ‘rr—‘)‘P‘Pz:(J[uog—l)‘PrzEfP 47)

Tt is assumed, once again, that \p is nonsingular
and that it varies sufficiently slowly that it can
be considered as a constant in the initial stages of
the analysis. The resulting differential equation
is linear and is of clliptic or hyperbolic type de-
pending on whether the free-stream Mach num-
ber, rather than the local Mach number, is less
than or greater than unity. At free-stream Mach
number 1, the term fp vanishes and equation (47)
reduces to a partial differential equation of para-
bolic type that is familiar from the study of heat
conduction. This appears to be reasonable
inasmuch as properties of equations of parabolic
type are intermediate, in a certain sense, between
those of cquations of elliptic and hyperbolic type.
At free-stream Mach numbers slightly different
from 1, the term fp remains, but is small. The
present analysis of such flows is thercfore also
Dased on considerations that are normally applied
{o equations of parabolic type.

The starting point is the following relation for
op derized from cquation (47) with Xz positive
and constant, the boundary conditions stated in
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cquation (1), and the form of Green’s theorem
associated with the left side of equation (47):

UG

= 47r 0 *—¢
L(¥, (° ’
___f def p(lpf orfndt  (48)
Ae Jo 0 g
where
_ Aplr2e?—2rp cos (6-0)]
o :_——)\[— € e
r 4r(r—§)

The corresponding expression for up follows by
differentiation. It can be approximated for points
o the surface of a smooth slender body by

SN(E) S”’(.I')
irf r—¢ &

)\1 an ([Bf p(]pf fpopde (49
P

C=FEuler’s constant =0.577215665 .

up 877G heSeC
U, A4r 4

where

If the free-stream Mach number is unity, fp
vanishes and #, can be calculated directly. The
resulting expression is precisely that proposed by
Oswatitsch and Keune in references 19 and 20 for
the ealculation of % on the surface of the forepart
of an arbitrary slender, pointed body of revolution
al free-stream Mach number 1. They have shown
that the results are in remarkably good agreement
with those measured on the front half of a para-
bolic-arc body having a thickness ratio 7 of X.
In this comparison, the parameter A was arbitrar-
ily equated to

1 2 1
=gz (rHD) s 2 (50)

in the notation of the present paper. In the in-
vestigations mentioned above as well as further
studies reported in references 21 through 26, the
parameter Ap 18 regarded throughout as a con-
stant, and various means are proposed for the
selection of an appropriate value. Tt appears, in
general, that the results obtained in this way are
remarkably accurate if the resulting values for
dufdr arc indeed reasonably constant. 1If, on the
other hand, Ouw/Oz varies sufficiently along the

body, no choice of a single value for \p will lead
to a useful result. This point, which has already
been discussed in some detail for two-dimensional
flows in reference 5, is developed further in the
course of the following discussions. Some criti-
cisms of the above procedure, although principally
from a different point of view, have appeared in a
note by Miles (ref. 27).

If the free-stream Mach number is not unity,
equation (49) is an integral equation, and it might
appear that little progress toward a solution has
been made. I attention is confined to Mach
numbers near unity, however, it is only necessary
to approximate ¢ well locally and it is sufficient
to substitute Ap/k for @i or du/d¢ in the triple
integral.  The integral can then be evaluated and
the following relationship results:

_ rr Wl
e 1AL 87 S

3[ Hy+1) 4ar drr
I‘ g” 77777§,’(£ ]E (51)
41r

If, once again, £ (Qu/dr) is restored in place of
Ap, the subscript P is dropped, and use is made of
the following relation between Ou/0s and dufdr

ulong the surface of the body
U )] dRr
! R dr

7)) ASG

[Or Lu )] +i1§é, (52)

a nomnlinear ordinary differential
obtained for # on the body surface.

U 1—A1.2 S’”(x) In |: (
4 dr\U

Uszg(wr])

S'?"} M, 7—}—1)8()‘]
47S L

equation is
It is

S”(.I‘) S”(E)
T L ICED
d ) l: f\[‘,,?—l } 8’8
dr “dr | U 1[ SHy+1) T 478
M 2—1
+°‘I’{S"( )[1' TG
S”(.I‘ ‘[ (v +1)S8e

S

4,rf S (=5 S"(a ,E]} (53b)
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This equation is of the first order and the same
general form

Pl (54)
as cncountered in the analysis of subsonic and
supersonic flows in the preceding sections, and it
is again necessary to specifly some condition for
the evaluation of the constant of integration.
Two classes of cases are to be distinguished.  One
class includes the foreparts of bodies with a convex
corner, such as a conc-cylinder, for which the
necessary condition is supplied by the fact that
the velocity must be sonie, that is,

u 1—2,2

UML) o5
at the shoulder. The other includes smooth
bodies along which the velocity accelerates
smoothly through sonic velocity aund for which
there is no point for which a value for u can be
specified by a priori considerations. The pro-
cedures followed in the preceding sections and in
reference 5 suggest that w be equated to up at the
point on the forepart of the body where §7/(2) is
zero, since, for Mach numbers near unity, up is
independent of Ap at this point. This point has
the additional property, evident from equations
(53) and (55), of corresponding to the station
toward which the sonie point approaches as the
thickness ratio of the body becomes vanishingly
small.

This procedure does not suflice {0 determine a
solution in the present case, however, because
equation (53) is singular at this point and an
infinity of integral curves pass through the value
u=1up at the point where 87/ (x) vanishes. Of all
these curves, however, only one is analytic (all
derivatives finite) at this point, and selection of it
suffices to determine a unique solution. That
this is so can be seen by consideration of the series
of expressions obtained by successive differentia-
tion of cquation (53a) with respect to x.  After
an arbitrary number n of differentiations, an
expression is obtained for d*u/dx* that involves
derivatives of % with respect to z up to the order
n-+1. Then-+1 derivative is, of course, unknown,
but it 1s multiplied by S”(x) and the product
vanishes at the point where S’’(x) is zero, pro-
vided always that d*Tu/de™™ is finite. It thus

follows that all of the cocfficients of a Taylor
series expansion for u at the point where S/ (x) is
zero can be determined, the only requirement
being that, at each step, the derivative of next
higher order is finite. The Taylor series suffices
for the determination of the solution of equation
(53) in the neighborhood of the point where S”7 ()
vanishes. The remainder of the solution can be
determined by application of standard methods
such as that of Milne described in the preceding
section on subsonic flows.

APPLICATION TO CONE-CYLINDER

A simple application of the foregoing theory is
provided by consideration of flow with free-stream
Mach number near 1 past a slender circular cone-
cylinder of maximum diameter d and cone length

;AW I

Fioure 13.—View of cone and principal dimensions.

1/2 as illustrated in figure 13. The ordinates R

of this body are given by

RT(Z%=TT for 0<la<{If2

for x2>1/2

The variation of cross-section area § with z along
the conical part of the body is thus

S=nRi=wrrix® (57)

Details of the solution.—Substitution of the
expression for S{z) given in equation (57) into
equation (53b) leads to the following differential
cquation for u along the surface of the cone:

M,
A IR “““’{ i

Gl ey T et D }
+j‘[m.2'(7“{_i) *lnx 2—1 ’] rS)

Introduction of the new variable G(:L') defined by

M, 21

G(.T) =E+W—T2 1]1 z (59)
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leads to an equivalent diffcrential equation

dG 4z 26
o BT e SR LA D

which can be solved by separation of variables.
The result is

4u?
ln[CI J[ 2(7+1)T€ :] (61)

The corresponding expression for # along the
surface of the cone follows from ecquation (59)
and is

u M2

M1,
R RS VAR

7'2
—glnl:C, T 7+1 “e] (62)

The constant of integration (; that appears in
cquations (61) and (62) is evaluated by use of the
condition mentioned in the preceding section that
the local velocity must be sonic at the shoulder;
that is, the relation given by equation (55) holds
at z=={/2. This procedure leads to the following

result:
A 4
o~(s) [ armmrome]  ©

Substitution of this result for (7 in equation (62)
and a slight rearrangement of terms yields the
following expression:

v M 21 . [T
S VTR R VR (1/“2

g 4[1 (1732]
—gny Tl 69

The corresponding expression for the pressure
coefficient ', on the surface of the cone follows
from cquation (3) and is

201,
R
TZ
ol 2+5LEX@£1 P,
T T (v 1) 22 ?

A plot of the values for €, that result upon appli-
cation of equation (65) to the special case of a
cone-cylinder of semiapex angle 7 of 1/10 in a flow
with free-strcam Mach number 1 is shown in
figure 14.
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TF16UuRE 14.~—~Pressure distribution on a cone-cylinder at
Mach number 1, as indieated by equation (65).

Examination of the result given by equation (65)
reveals that the similarity rule for the surface
pressurcs given by equations (9) and (12) is not
satisfied exactly. It is evident, however, that
perfect agreement would be attained if the follow-
ing approximation were introduced:

[ (1/’>] I: (l/~):|

T D)% ~ ALy 1) 2

It follows, therefore, that the similarity rule is
very nearly satisfied over most of the length of
the cone, and that the anticipated failure of the
similarity rule in the vieinity of the shoulder is
cffectively confined to a very small region.
Further examination of the result given by
equation (64) reveals that the condition that
ou/ox is greater than zero specified by equation
(46) at the outset of the analysis is not satisfied at
the apex. This is evident from the following ex-
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pression derived from equations (52), (57), and
(64)

[P (i‘.)] & (L _S8'87
or [’m R—d.I' LT“, R 47 S
wf T
+(77)
(67)

=%{;\1w2(7+1)14e0+4 [1 _(l-;%)]?

from which it can be seen that du/dx vanishes at
x=0. This result suggests that the range of use-
fulness of equation (65) has probably been ex-
ceeded in the vicinity of the apex, and recalls an
example in two-dimensional flow presented in
reference 4 in which Ou/Or vanishes and then
becomes negative along the rear part of a par-
ticular airfoil.

Determination of correction for the vicinity of
the nose.—The calculation of the pressure distri-
bution at a Mach number near 1 on a body of
such a shape that du/dz is positive along part of
body and negative along the remainder cannot be
accomplished by dircet application of any one of
the relations developed in the preceding sections.
On the one hand, the considerations based on a
differential equation of parabolic type that lead
to equation (53) permit the analysis of flows that
pass through sonic velocity, but fail when Ou/ox
is zero. On the other hand, the considerations
based on a differential equation of elliptic or hy-
perbolic type that lead to equations (20) and (39)
permit the analysis of flows in which ow/or passes
through zero even though the free-stream Mach
number may be unity, but fail if the local velocity
is sonic. The breakdown is associated in each
case with the fact that the basic partial differential
cquation, that is equation (16), (35), or (47), as-
sumes a degenerate form when X is zero. The
pressure distribution along a body having the
properties described above can, nevertheless, be
caleulated by considering the solution in scctions
and joining together the various results in such a
way that the failings associated with vanishing A
are avoided. This procedure, which is much
simpler than a complete re-analysis of the problem
from a sufficiently general point of view to en-
compass the entire problem in a single sweep, 18
exactly the same as that already employed in
reference 4 in the analysis of the related problem
in two-dimensional flow mentioned above.

The flow in the vicinity of the apex of a slender
cone-cylinder is subsonic in nature, hence the
further investigation of the pressure distribution
on this part of the body is based essentially on
equation (20). Tt is necessary, however, to add
some qualifying remarks about the expression to
be used for u,, the solution for zero Mach number,
since the discontinuity in the slope of the surface
at the shoulder violates the conditions imposed in
the derivation that the body be smooth. The
particular case of a slender cone-cylinder in in-
comprehensible flow, or in linearized subsonic flow,
has been investigated by several authors and ap-
proximate solutions involving various degrees of
refinement and complexity are presently available.
Tt is not necessary to employ the more refined
approximations in the present application, how-
ever, since only the part of the result that pertains
to the forward part of the cone is to be used. A
simple expression that is adequate for the present
purposes is one that follows from equation (17)
upon carrying out the indicated operations, ex-
panding the terms containing = in a power scrics,
and disregarding terms proportional to the third
or higher power of 7. The resulting expression
has been given by Laitone in reference 28, and
can also be obtained directly from somewhat
more general expressions given in references 29
and 30, or on page 311 of reference 6. Tt is

U Tr 72 r r
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The corresponding expression for the pressure
coefficient (7, can be determined by substitution
of this relation into equation (3). A measure of
{he accuracy of this approximation can he had by
comparison with the results of a much more
refined analysis of incompressible flow past a
slender cone-cylinder given by Fraenkel in refer-
ence 31. The results of such a comparison are
Mustrated in figure 15 for the special case of a
cone-cylinder having a semiapex angle = of 1/10.
It can be seen that the two theories are in very
good agreement over the forward portion of the
come.

Differentiation of equation (68) in accordance
with the procedure associated with equations (18)

T
ty
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Fraure 15.—Pressure distribution on a cone-cylinder in
incompressible flow.

and (19) results in the complete loss of A, in the
analysis. The subsequent integration is immedi-
ately possible, therefore, and the resulting ex-
pression differs from equation (68) only in that
the term involving Ag is replaced by an arbitrary
constant of integration, thus

7= (75)-3w [1(5) (%)

— FC  (69)
@‘ﬁﬁ

The value for the constant of integration €} is to
be selected so that the value for « given by equa-
tion (69) is equal to that given by equation (64)
at the point where the two results are joined.
The latter point is determined by selecting the
point at which the two values for du/dz obtained
by differentiating equations (64) and (69) arc
equal. It is found, upon following these pro-
cedures and using the approximate relation stated
im equation (66), that the point at which the two
results are to be joined is situated at

+5

l—}%:,— (70)

and that the expression for the constant of inte-
gration is given by

M2—1 3
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These results lead to the following expression for
(', upon assembly and insertion into equation (3):

= ‘;;—Y(_ﬂ—l) ~T2"<z/z)
+7'21“{[“\ (7—{-1) 72€ :H:([/ >< [/ >]}
+;2 II—Z -1t (72)
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It follows furthermore that equation (72) is to be
used to caleulate the pressure distribution for the
forward third of the cone, and equation (65) is to
be used for the remainder of the length of the cone.

The magnitude of the difference between the
two results and the manner in which they join
together are illustrated in figure 1€ for the special
case of a cone-cylinder of semiapex angle 7 of 1/10
in & flow with free-stream Mach number 1. This
figure shows the values for €, indicated by equa-
tion (72) for the front portion of the cone together
with those indicated by equation (63) for the en-
tire length of the cone. Tt is evident from this
comparison that the two resulis can be joined
together in a manner that is acceptable for most
practical purposes. Although the difference be-
tween the two results is not large over most of
the forward third of the cone, the result indicated
by equation (72) confirms the general motivation
for the determination of a correction for this
region since the values for du/dz are negative in
the vicinity of the apex. It may be noted, fur-
thermore, that the results indicated by equation
(72) arc in perfect agreement with the similarity
rule indicated by equations (9) and (12). This is
a conscquence of the systematic use of the approx-
mmate relation given in equation (66).

Comparison with experimental and other theo-
retical results. —xperimental results for C, on
the surface of a cone-cylinder having a semiapex
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Ficvre 16.—Illustration of nose correction to pressure
distribution on a cone-cylinder at Mach number 1.

angle of approximately 7° (r=0.1225) have been
given for a range of Mach numbers around unity
by Page in reference 32. Since it was considered
particularly important in Page’s investigation to
both minimize and ascertain the degree to which
the results are influenced by wind-tunnel wall in-
terference, the tests were conducted in two wind
tunnels of different size, one having a test section
14 feet square, the other 2 feot square, using a
small model, the conical part of which was 5.50
inches in lIength. The results for free-stream Mach
number 1 are presented in figure 17. The differ-
ence between the two sets of experimental results
is attributed by Page to wind-tunnel wall inter-
ference. Page goes on to show that substantial
interference effects remain even in the data ob-
tained in the larger wind tunnel, and finally de-
termines, by both theoretical and experimental
considerations, a curve for the pressure distribu-
tion corrected for interference. The latter results
are indicated in figure 17 by the flagged symbols.
The corresponding theoretical pressure distribu-
tion calculated by usc of equations (65) and (72)
is indicated by a solid line. Also included in this
figure is a plot of the pressure distribution indi-
cated by the numerical approximate solution of
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FiaurE 17.—Pressure distribution on a cone-cylinder at
AMach number 1, as indicated by present theory, by
other theoretical results, and by experiment.

Yoshihara (vef. 33) ! for a cone-cylinder having a
semiapes angle of 1/10 radian transformed so as
to bo appropriate for a 7° cone by application of
the similarity rule given by equation (12). It can
be seen that the pressure distribution given by
the present theory is distinctly different from that
given by Yoshihara, but is similar in form to the
experimental pressure distributions, although dis-
placed somewhat. The displacement is consider-
ably less for the tests conducted in the large wind
tunnel than in the small wind tunnel, and nearly
disappears when the results of the tests in the
large wind tunnel are corrected for interference.

The foregoing results may be compared with
those obtained by application of the simple line-
arized theory of Oswatitsch and Keune (refs. 19
and 20) for sonic flow past a slender body of revo-
lution. In this theory, Ap is replaced by a con-
stant, such as that indicated by equation (50),
and the corresponding expression for the pressure

1 A correction has been applled to Yoshihara’s results to allow for a sign
error in the quadratic term of the expression for Cy.
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Froere 18, Comparison of results indieated by equation
(73) with those indicated by the present theory for the
pressure  distribution on  a  cone-eylinder at  Muach
number 1,

distribution on the conical part of a slender cone-
cylinder follows directly from equations (51) and
(3). Ttis

1,C /
O [TEDTE (Y )

if equation (50) is used to evaluate hp. Tigure 18
shows a plot of the numerical results for a cone-
cylinder having a semiapex angle of 7° together
with the present theoretical results and the experi-
mental results of Page, as corrected for wall inter-
ference. Tt can bhe seen that the results indicated
by equation (73) are of more or less the correct
order of magnitude, but fail to predict, even quali-
tatively, the proper behavior in the vieinity of the
shoulder. Tt should be observed, furthermore,
that no essential improvement would result if A,
were replaced by some other constant that than
indicated by equation (50) since such a change
leads only te a uniform change in €, along the
entire length of the cone. This difficulty of the
linecarized theory for sonic flow is to be expeeted

301377 59 ——4

becanse the region of dependence for the solution
at an arbitrary point is confined to the part of
space situated upstream of this point. As a re-
sult, the influence of the part of the cone-cylinder
situated between the arbitrary point and the
shoulder is not included in the solution, although
it should be since the flow in this region is sub-
sonic. The present theory, on the other hand,
includes the influence of this region in the final
result sinee the constant of integration associated
with the differential equation that results upon
replacement of Ay by k(du/or) is specified at the
shoulder and the integration proceeds in the up-
stream direction.  Tn this way, the approximate
expression for 7, indicated by equation (65), and
therefore also that indieated by equation (72), de-
pends on conditions along the entire conical part
of the cone-eylinder, and the influence of regions
situated both upstream and downstream from an
arbitrary point are included in the result.
Theoretical results for the pressure distribution
on a slender cone-cylinder in flows with high sub-
sonie or sonic free-stream velocity have also been
given recently by Kusukawa in reference 34.
These results were obtained by application of an
approximate relation between axisymmetric and
two-dimensional flows given previously by the
same author in reference 35. In this way, the
solution for a cone-cvlinder is related to that for
an airfoil having ordinates proportional to z? fol-
lowed by a straight section extending downstream
to infinity. Kusukawa obtains an approximate
solution for the latter problem by econsidering a
flow that separates from the shonlder of the airfoil
and caleulates the pressure distribution on the air-
foil surface with the aid of a pressure correction
formula. This formula, which was given in a
third paper by the same author (vel. 36), relates
the pressure at a given point in a compressible
flow to that at the same point in an incompressible
flow past the same airfoil. This procedure has
been applied to calculate the pressure distribution
on a conc-cylinder having a semiapex angle of 7°
and the results are presented in figure 19 together
with the present theoretical results and the experni-
mental results of Page. The latter results are
again corrccted for wall interference, as noted in
associated with figure 17. It
appears from this comparison that the values for
7, calculated by the method of Kusukawa are too

the  discussion
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Fravre 19.—Comparison of results indicated by Kusu-
kawa (ref. 34) with those indicated by the present theory
for the pressure distribution on a cone-cylinder at Mach
number 1.

large at all points along the length of the cone.
Of the three principal steps in the derivation of
Kusukawa's results, the only one that has not
been checked by a number of comparisons with
experimental or other theoretical results, and is
thus the most likely source of the discrepancy, 1s
the approximate relation between axisymmetric
and two-dimensional flows. Tt is not likely that a
significant part of the discrepancy is a conse-
quence of the use of the assumption that the flow
separates from the shoulder instead of performing
a Prandtl-Meyer cxpansion around the corner,
since it has been shown in references 36, 37, and 5
for the case of a wedge profile that the nature of
the flow behind the shoulder has very little effect
on the pressure distribution on the part of the air-
foil ghead of the shoulder. Neither is it likely
that a significant part of the discrepancy can be
traced to the use of the pressure-correction
formula. This formula, which was derived by
Kusukawa by application of the WKB method of
approximation to the equations of transonic flow

theory expressed in terms of hodograph variables,
has also been found independently (except for
replacement of y+1 by M.2(y+1) as a result of a
corresponding change in the fundamental equa-
tions of transonic flow theory) by application of
much different considerations and is presented as
equation (28) in reference 4. This result is
evaluated in references 4, 5, and 36 by numerous
comparisons with other theoretical and oxperi-
mental results. Of the various examples, the one
that is most closely associated with the present
discussion is a comparison given in reference 5
with the results indicated by the exact solution of
the equations of transonic flow theory for sepa-
rated flow past a wedge profile published recently
by Helliwell and Mackie in reference 37. This
comparison shows that the numerical values for
the pressure distribution on the surface of the
wedge are hardly distinguishable, whether calcu-
lated by use of the exact or approximate formulas.

Some insight into the range of Mach numbers
surrounding unity for which the present theory
might be expected to give useful results can be
gained by noting that the indicated variation of
C, with M, is essentially proportional to M .-1
and that the constant of proportionality is very
nearly equal to that associated with the known
invariance of local Mach number 3 with changes
in free-stream Mach number M, at M.=1, that
is, with the relation

“dM Y -
(\dﬂ; )Mmﬁ]f() (74)
The exact relation for dC, /M., for M., —1 for
isentropic flow that corresponds to equation (74) is

dC,,r) _7‘4——_ 2 ’
(d.“{m Mm=‘_—7+1 v ((‘ﬂ)ﬁlw'xl (75)

The approximaie relation indicated by the present
theory is
ac, ) 4 e
s —_ 9,2 -
(ﬂ[m M =1 ’Y+] ’ (t)

exeept al the shoulder where it is

((;]\(/i), 427-11 @77)
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All three relations are nearly cquivalent, since
20,/(y+1) and 27* are very small in comparison

1
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with 4/(y+1) for slender bodies. It follows,
therefore, that the variation of C, with M, indi-
cated by the present theory is sufficiently accurate
for all engincering purposes within at least a small
range of Mach numbers surrounding M_=1. Ti
should be noted that the range of Mu(h numbers
for which the above results may be expected to
apply is much smaller than in two-dimensionsl
flows, since Guderley has indicated (ref. 38, p. 296)
that the leading term in the expansion of the
deviation of M from its value for M,=1 is pro-
portional {o (M,.—1)° for planar flows and
(M, —1)* for axisymmetric flows.

Pressure drag..—The pressure drag of a slender
cone-cylinder at free-stream Mach number 1 and
vieinity can be found by integration of the general
relation given by equation (13) with the expres-
sions given by equations (57), (65), and (72)
substituted for S and @,.  This procedure leads to
the following expression for the drag coefficient
referred to maximum cross-section area if equa-
tion (65) is used for ', along the entire length of

the cone:
M1

M y+1)

=2
("“ r Z) (ert(1/2)]

, 4 N
+7? [—-lan M2yt l)f‘pc:l (78)

If equation (72) is used instead of equation (65)
to calceulate €, along the forward third of the cone,
the value for €y, is smaller by an amount given by

/1 16 .
AC,=12 <2—Hn 27) (79)
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Comparison with cquations (9) and (14) reveals
that both of these results for (), satisfy the sim-
ilarity rule exactly.

The variation of ', with 7 for free-stream Mach
number 1 indicated by equation (80), which
reduces to the following simple form for 1, =1
and y=1.4,

Crp=—72(1.08965 4 In 7) (81)
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Itetre 20, - Variation of pressure-drag coefficient with
thickness ratio for a cone-cylinder at Mach number 1,
as indicated by present theory, hy other theoretieal re-
=ults, and by experiment.

is shown graphically in figure 20,  Also included
i this figure arc the corresponding theoretical
results indicated by the following equation deter-
mined by combination of the similarity rule and
Yoshihara’s result for a conc-cylinder having a
semiapex angle of 1/10 radian:

Cp=—72(1.55-441n 1) (82)

and by the following equation given by \liles in
reference 39.

(=—72(0.0014 4 In 7) (83)

The latter formula is derived by an approximate
procedure based on matching a solution of La-
place’s equation in two dimensions for points near
the axis with the asymptotic solution of Guderley
and Yoshihara (refs. 40 and 41) for points at great
distances from the axis.  The solutions are joined
at the sonie line, and the drag is determined by
application of momentumn methods without an
intermediate calculation of the pressure distribu-
tion. Three data points for a cone-cylinder having
a semiapex angle of 7° are also included in figure
20. They represent the values obtained from the
experimental investigation of Page reported in
reference 32, In accordance with the notation
already employed in the display of Page’s results
in figure 17, the square svmbol represents the
result obtmnvd from tests in a 2-foot wind tunnel,
the plain cirele represents the result obtained in
a t4-foot wind funnel, and the flagged symbol
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vepresents the latter result corrected for wall
interference. Tt can be seen that the latter result
is very close to the theoretical curves computed
by means of cither equation (81) or (82), but is
noticeably less than that indicated by equation
(83).

Comparison with results for subsonic and super-
sonic flow.-—The remainder of the discussion of
the aecrodynamic properties of cone-cylinders is
concerned with an examination of the relation
between the results given in the preceding section
for Mach number 1 and vicinity and those avail-
able from other sources for subsonic and supersonic
flows. The discussion is of particular interest
because possession of knowledge of the results for
Mach numbers near unity greatly facilitates an
understanding of the process by which the pressure
distribution changes from the form shown in figure
15 for incompressible flow to the familiar constant
pressure associated with supersonic flow.

In order to be more specific, consider the special
case of a cone-cylinder having a semiapex angle
of 1/10 radian. TFigure 21 shows the pressure
distribution on the conical part of such a body for
the} highest Mach number for purely subsonie
flow (namely M,=0), for Mach number 1, and
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Fiavre 21, -Pressure distributions on a cone-cylinder at
the upper and lower critieal Mach numbers and at Mach
number 1.

for the lowest Mach number for purely supersonie
flow. The latter Maech number is very nearly
1.055. The results for zero Mach number are
those given by Fraenkel in reference 31 und shown
previously herein in figure 15. The results for
Mach number 1 are those indicated by equation
(72) for the forward third of the cone and by
equation (63) for the remainder of the cone.  The
results for the upper eritical Maceh number are
determined from the numerical results given by
Oswatitsch and Sjodin in referenee 15 and by
Shen in reference 16 reinterpreted so as to conform
with the formulation of the equations of transonice
flow theory given in cquations (1) through (5).
Although the differences in the numerical results
are small, such a change is necessary because the
basic equations used by Oswatitsch and Sjodin
and by Shen are not only slightly different from
those used herein, but are slightly different from
cach other. The difference is concerned entively
with the quantity M_%(v-+1) that appears in
equations (4) and (5). This quantity is replaced
by v+41 in the investigation of Shen and by
(M2 DUL/(Uo—a*), where a* is the critical
speed of sound, in the investigation of Oswatitsch
and Sjodin.

A plot of the variation of pressure coeflicient 7,
with free-siream Mach number A, on the surface
of an infinite cone having a semiapex angle of 1/10
radian, as indicated by the theoretical analyses of
references 15 and 16 reinterpreted in themanner
deseribed in the preceding paragraph, is shown in
figure 22. A second curve labeled 7 is included
on this plot to illustrate the variation with free-
stream Mach number of the eritical pressure
coeflicient associated with the occurrence of sonic
velocity (.o, u U= (1~ M3 /[M v+ 1)]) on the
surface of the cone. This curve, which is com-
puted by use of the expression

M 21

=23 sty (84)
does not pass through 0 at free-stream Nach
number 1 because of the particular manner in
which the sonie veloceity is expressed in the approx-
imate equations of transonic flow theory. The
point of intersection of the two curves determines
the upper eritical Mach number and the associated
value for the surface pressure coefficient that are
shown in figure 21,
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Frsvre 22, -Variation of pressure coefficient with Mauch
number on the surface of an infinite cone.

If the [free-stream Mach number is greater
than the upper eritieal, the flow is supersonic
everywhere and the results summarized in the
preceding paragraph apply equally to a cone of
infinite or finite length. If the free-stream
Mach number is less than the upper eritical, but
greater than untty, the flow adjacent to the sur-
face of the cone is subsonie and the flow field as a
whole is transonic. " Tn this case, the result sum-
marized in the preceding paragraph may be ex-
peeted to apply only to a cone of infinite length,
or to points near the apex of a cone of finite
length, as in the case of a cone-cylinder. Tt is
known, in particular, that the velocity must be
sonic at the sohulder of a cone-eylinder if the
flow is subsonic along the surface of the cone,
Sinee intermediate pfessures would be anticipated
at intermediate points along the surface of the
conical part of a cone-cylinder, the two curves
shown in figure 22 tepresent the variation with
Mach number of the upper and lower bounds
for the values for the pressure cocfficient along
the conieal part of a cone-cylinder having a semi-
apex angle of 1710 radian. The smallest Mach
number for which a value for the surface pressure
is indicated in figure 22 represents the limit of
conical flow past an infinite cone and is the Jowest
Mach number for which the bow wave is attached
to cither an infinite or finite cone having a semiapex
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------ 18! order, (eq {B5)) \ 510
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Fioere 23.——Variation of pressure coefficient with Maeh
number at various stations along the length of a cone-
eylinder of thickness ratio 1/10, as indieated by theory.

angle of 1/10 radian. At still smaller Mach
numbers, the bow wave ig detached, or nonex-
istent if the free-stream Mach number is less than
unity, and a stagnation point occurs at the apex.
The approximations of slender-body theory are
not sufficient to provide a solution that exhibits
the proper behavior at the apex, however, and
a logarithmic infinity appears at this point instead
of the proper value associated with a stagnation
point.

Further details of the transition from subsonie
to supersonic flow are illustrated by the curves
shown in figure 23 in which the results shown in
figure 22 are repeated together with additional
curves for smaller Mach numbers.  Several curves
are shown, each of which represents the variation
of the pressure coefficient with Mach number al
a certain station along the length of a cone-
cylinder having a semiapex angle of 1/10 radian.
The additional results shown in figure 23 are from
three different sources. The small circles at zero
Mach number represent the values indicated
by the solution given in reference 31 by Fraenkel
for incompressible flow. The short lines al Mach
number 1 represent the values indicated by equa-
tions (65) and (72) of the present theory. The
dashed lines at subsonic Mach numbers represent
the variation of pressure coefficient with Mach
number calculated by use of the following ex-
pression derived by combination of the results of
Fraenkel ﬂ”ir for incompressible flow and the
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influence of Mach number indicated by equation
(18) with Ag replaced by 1—2M2:

r=—272Iny1—-M 2+ 0,,‘,‘ (85)

Tt should be noted that results caleulated in this
way are not of the same quality as the remainder
of the results shown in figure 23, since they repre-
sent a solution of the linearized equations of
subsonic flow rather than the nonlinear equations
of transonic flow theory. One important conse-
quence of this fact that is not apparent from this
plot is that the value indicated for the pressure
coefficient at the shoulder is infinite rather than
the finite value associated with the ocecurrence
of sonic velocity. The subsonic results indieated
on this plot for points removed from the shoulder
arc probably in at least qualitative agreement
with those that would be indicated by the solution
of the nonlinear equations of transonic flow theory,
provided the free-stream Mach number does not
approach too closely to unity. Tt may be noted,
in particular, that the effect of Mach number
indicated by cquation (85) is simply to shift
the entire curve representing the pressure distribu-
tion. A similar result would also occur if the
present method of approximation were applied to
equation (18) to determine an approximate solu-
tion of the equations of transonic flow theory.
The reason is that the entire term containing X
is lost in the initial differentiation and is, in
offect, replaced by an unknown constant upon
integration of the differential equation. Tt would
be necessary, however, to include some additional
refinement in the details of the solution at the
shoulder before a result would be obtained that
oxhibits the proper behavior in the vicinity of
this point.

Additional insight to the nature of the
variation with Mach number of the pressure
distribution on a cone-cylinder can be gained by
examination of the experimental data of Page for
a conc-cylinder having a semiapex angle of 7°
Figure 24 has been included, accordingly, (o sum-
marize the theoretical and experimental results
for three representative stations along the length
of the cone. The plain data points represent the
values measured in a 2-foot wind tunnel. The
flagged data points represent the values measured
on the same model in a 14-foot wind tunnel. Tt
can be seen that the two sets of results are in good

agreement at Mach numbers well removed from
unity, but that substantial differences occur at
Mach numbers near unity. As noted previously
in the discussion of these same data, Page attrib-
utes these differences to wind-tunnel wall inter-
ference, and proceeds to determine a theoretical
estimate of the necessary corrections that must he
applied in order to simulate frec-air conditions
with free-stream Mach number 1. The solid data
points represent the results from the 14-foot wind
tunnel corrected in this way for wall interference.
Also included in this sketch are a number of solid
and dashed curves representing theoretical results
calculated in the same manner as deseribed in
conneetion with figure 23. It can be seen that the
experimental data support the remarks of the
preceding paragraph concerning the general nature
of the {ransition from subsonic to supersonic flow
indicated by the various theoretical results.  These
data also indicate some of the difficulties en-
countered in the determination of experimental
data for free-stream Mach number 1 that are
essentially free of wind-tunnel wall interference.
Although substantial gaps remain for which the
drag of a cone-cylinder cannot be computed at the
present time, it is possible to sketch the variation
of drag with Mach number from the results and
discussion of the preceding paragraphs. The
basic framework is provided by three classes of
results; namely, those for zero Mach number, those
for Mach numbers near unity, and those for Mach
numbers greater than the upper critical. At zero
Mach number the drag is zero in accordance with
D’Alembert’s paradox. At Mach numbers near
unity the drag is given by equation (81). At
Mach numbers greater than the upper critical, the
drag coefficient is the same as for an infinite cone,
and is equal numerically to the value for (7, shown
in figure 22.  These results are illustrated in figure
25 by solid lines and a small circle.  The dashed
Jine at Mach numbers less than the upper critical,
but greater than the Mach number for shock
attachment, vepresents the values for the drag
coofficient of an infinite cone. Tt follows from
the discussion of the pressure distribution given m
the preceding pages that the drag cocfficient for a
cone-cylinder is less than that for an infinite cone.
The dashed line at subsonic Mach numbers repre-
sents the values for the drag cocfficient that are
associated with the pressure distribution indicated
by cquation (85). These values are given by the
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Fievre 25, -Variation of pressure-drag coefficient with
Muach number for a cone-cylinder of thickness ratio 1/10,
as indieated by theory.

following relation obtained when equations (13)
and (85) are combined

Cp=—272In1-M_? (86)
Although it is apparent from the discussion in the
preceding paragraphs that the latter results are
not as reliable as the remainder of the results

APPLICATION TO THE FRONT HALF OF A PARABOLIC-ARC
BODY

As a first application of the present theory for
flow with free-stream Mach number near 1 around
a smooth body, consider the case of the front half
of a parabolic-are body of revolution of lengthZand
diameter 4. The expressions for the ordinates I,
the cross-section area S, and the location of the
points at which §”/(x) vanishes are given by equa-
tions (25), (26), and (27). Attention is confined
in this section, however, to the part of the body
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situated between =0 and x=[/2. The pressure
distribution for this part of the body is independ-
ent within wide limits, of the shape of the rear
and is appropriate, in particular, for cither the
case in which the rear part of the body continues
as a parabolic-arc body or in which it continues as
a cylinder extending downstream from r={/2.
For the special case deseribed above, the ordinary
differential cquation for w on the surface of an
arbitrary body of revolution given by equation
(53b) reduces to the following form:

i[fu, U1 SS
Tl TG0 ] ams T S"
Mp—1 87 Ml FDSE
M Hy+1) 4r 4r
+672 (2— )]} (87)

As deseribed in connection with the discussion of
the properties of equation (53) for smooth bodies,
the caleulation of the solution of equation (87) is
started by use of the assumption that u is analytic
at the singular point where S”/(x) vanishes.  The
solution can thus be expanded in a Taylor's series
from which the values for u can be readily calcu-
lated for points slightly removed from the singular
point.  Once these values are known, the solution
for the remainder of the body can be calculated
numerically by Milne’s method.  The correspond-
ing values for the pressure cocfficient can be
calculated direetly therefrom with the aid of
equation (3).

Comparison with experimental and other theo-
retical results.—Experimental results for the
pressure distribution at free-stream Mach number
1 on the front half of parabolic-are body of
fineness ratio 6 followed by a eylindrical section
have been given in reference 19 by Oswatitsch and
Keune. These results are presented graphically
in figure 26 together with the theoretical pressure
distribution caleulated in the manner described
above. It can be seen that the agreement be-
tween the theoretical and experimental results is
satisfactory for most purposes.

Attention is called, however, to the fact men-
tioned previously that the simpler approximation
of references 19 and 20 in which Ap is replaced by
the constant indicated by equation (50) also leads
to theoretieal results that agree well with the
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Fiotvre 26. Pressure distribution on the front half of a
parabolic-arc body of fineness ratio § at Mach number 1,
as indicated by present theory and by experiment.

experimental pressure distribution shown in figure
26. The results of such a ealculation are shown
in figure 26 together with the theoretical and
experimental results from figure 26.  Also in-
cluded is another curve calculated with constant
a evaluated using equation (50) with a’=1
rather than %, These two values for a? are those
considered originally in references 19 and 20. Tt
is shown in these references that both have merit,
but the value of 2=0.50 is recommended because
it is superior in the treatment of certain important
details of the flow field. Tt is also stated that

according to the similarity rule, the parameter
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Fiaure 27.—DPressure distribution on the front half of a
parabolic-are hody of fineness ratio 6 at Mach number 1,
as indieated by present theory, by experiment, and by
other theoretical results.

a? depends on the shape, bui not the thickness
ratio of the body.

Keune has modified these conclusions in more
recent publications (refs. 21, 22, and 23), and has
suggested, on the basis of considerations relating
to the mass flow, the sclection of such a value for
a® that the value for N\p agrees with half the value
for (y+1)¢.-/U. at the sonic point. Tt is further
shown that this procedure leads to values for a?
of 0.455 and 0.28 for parabolic-arc bodies having
thickness ratios » of 0.146 and 0.073.

Maeder and Thommen have independently
proposed a similar procedure, but without the
factor %, and have presented a curve in reference

26 from which the resulting values for @® can be
readily determined for any parabolic-are body
having a thickness ratio less than 0.25. This
curve leads to the following values for a? 0.274,
0.248, and 0.135, for parabolic-arc bodies having
thickness ratios of %, 0.146, and 0.073. Although
these values should be exactly half those indicated
by Keune for a body of the same thickness ratio,
it may be observed that the values are actually
related in a slightly different manner. The pres-
ent authors have not sought the source of this
discrepancy since the differences are much smaller
than those associated with the factor ) that exists
between the intended values. The pressure dis-
tribution on the front half of a parabolic-arc body
of fineness ratio 6 has been computed using the
value for a? given by Maeder and Thommen, and
is presented in figure 27. Tt is evident from
examination of the various results shown in this
figure that the procedure adopted for the selection
of a suitable value for ¢® has a significant effect on
the resulting pressure distribution. Although
certain of these procedures lead to results of good
quality for the pressure distributions on the front
half of a parabolic-arc body, it should be recalled
that no selection of a constant for Ap can lead to a
reasonable pressure distribution on a cone-cylinder.

Theoretical pressure distributions for the front
halves of parabolic-arc bodies of revolution of
fineness ratio 6 42, 10, 12, and 14 in flows with
free-stream Mach number 1 have also heen caleu-
Inted by means of the present theory. These
results, together with those given above for the
body of fineness ratio 6, are presented in graphical
form in figure 28. The numerical values for all
five cases are given m table TV. Tt should be
observed that only the values for @/l between 0
and 0.50 are to be considered in the present dis-
cussion. This particular family of bodies has heen
sclected because experimental pressure distribu-
tions arc available from the investigations of
references 14 and 11. In both cases, lests were
conducted on bodies that more nearly approximate
complete bodies than hall bodies, but the results
should be suitable for comparison with the present
theoretical results because the pressures on the
front part of such a body do not depend, at free-
stream Mach number 1, on the shape of the rear.
The results of such a comparison are shown in
figure 29. Although it is evident from the scatter
of the experimental data that the relative accuracy
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TFicure 28.—Pressure distributions on the front halves of
a scries of parabolic-arc bodies of various fineness ratios
at Mach number 1, as indicated by present theory.

of the experimental results diminishes with inereas-
ing fineness ratio, these comparisons show that
the theoretical and experimental resulls are in
essential agreement.

The results presented in the preceding para-
graph indicate that the magnitudes of the values
for €, arc strongly influenced by the fineness ratio.
The similarity rule given by ecquation (12) in-
dicates the existence of such an effect, and figure
30 is included to illustrate quantitatively the
degree to which the present results conform to the
similarity rule. In this figure the values for ('
for each of the bodies are converted to the corre-
sponding values for & body of fineness ratio 10 by
use of equation (12). If the present results con-

formed perfectly to the similarity rule, the results
for all five bodies would define a single curve. It
can be scen that the present results when so pre-
sented do not quite define a single curve, but the
differences between the various curves are small.
This indicates that the present results for the
pressure distributions on the front halves of a
series of parabolic-are bodies of different fineness
ratios are related, at free-stream Mach number 1,
in a manner that very nearly conforms with the
similarity rule. This conclusion is similar to that
for the cone-cylinder at free-stream Mach number
1, but quite different from that for the parabolic-
arc body at Mach numbers in the vieinity of the
eritical.

Pressure drag. Once the pressure distribution
on the front half of a slender parabolic-arc body
has been calculated, the corresponding value for
the pressure drag can be found immediately by
numerical integration of the general relations
given by equation (13). The necessary caleula-
tions have been carried out for each of the five
cases considered in this section, and the resulting
values for Cb=D/[(p./2) Us*Sx] at Mach number
1 are

Z/d! 6 {Gv’? 10 12 14

0. 01031

Cp 10.05988 i 0. 02903 : 0. 02063 | 0. 01416

These values are plotted as a function of 7 in figure
31 to illustrate the effect of thickness ratio on Cp.
Tt can be scen from examination of these values,
or by inspection of figure 32 in which Cplry 18
plotted as a function of =, that € is very nearly
proportional to the square of 7 as indicated by
the similarity rule given in equation (14).
Experimental values for the pressure drag can
be obtained by a similar integration of equation
(13) using the measured values for C, given in
references 11, 14, and 19, and repeated here in
figures 29 and 26. Oswatitsch and Keune have
already given the results of such a ealeulation in
reference 19 for the case of the front half of a
parabolic-are body of fineness ratio 6 followed by
a cylindrical body. Their result that (5 equals
0.058 compares very favorably with the corre-
sponding value of 0.05988 indicated by the
present theory. Experimental values for Cp have
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Fravre 29.—Pressure distributions on the front halves of parabolic-are bodies of various fineness ratios at Mach number

1, as indicated by present th

also been determined for cach of the other five
bodies for which measured pressure distributions
are presented in figure 29. The results are in-
cluded in figures 31 and 32. Attention is directed,
however, to the fact that the scatter in the meas-
ured values for C, for the bodies of fineness ratio
10, 12, and particularly 14 is such that considerable
uncertainty exists in the values for 5. An indi-
cation of the estimated magnitude of the un-

eory and by experiment.

certainty due to this cause is provided by the
vertical Iimes attached to the symbols. Tt can
be seen that the uncertainties associated with
scatfer in the pressure-distribution data are not
sufficiently great to account for the result, obvi-
ously incorrect, that the drag of the body of fine-
ness ratio 14 is negative. Tt appears quite possible,
on the basis of the results for the cone-cylinder
presented in reference 32 and shown here in
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Ficure 30.—Pressure distribution on the front half of a
parabolic-are body of fineness ratio 10, as obtained by
direct caleulation using the present theory and by usc
of the similarity rule.

figures 17 and 24, that this property of the experi-
mental data may be associated with the effects
of wind-tunnel wall interference. The results in
figures 31 and 32 are in agreement with the fact
that the effects of wind-tunnel wall interference
at free-stream Mach number 1 are of greater
importance, relative to the quantities measured,
for thin bodies than for thick bodies.

Tt is of interest at this point to compare the
experimental and theoretical values for €p given
in the preceding paragraph with those indicated
by the linearized theory of sonic flow given in
references 19 and 20.  This theory leads to a simple
rule for the calculation of the drag of half bodies
that states that the drag does not depend on the
value selected for ¢? in equation (50) and is equal
to exactly half of the value indicated by lincarized
supersonic theory. This rule, when applied to
the front half of a parabolic-arc body of thickness
ratio 7, results in the following simple expression
for Op:

Cp=(7/3)7* (88)

Curves illustrating the variation of (5, with -
indicated by this result have been included in
figures 31 and 32, from which it can be seen that
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Ficure 31.—Variation of pressure-drag cocfficient with
thickness ratio for the front half of a parabolic-are body
at Mach number 1, as indicated by present theory, by
other theoretical results, and by experiment.

the values indicated by equation (88) are some-
what larger than cither the cxperimental values
or the calculated values indicated by the present
theory. DBefore leaving this topic, it should be
mentioned that Keune states briefly (ref. 23) that
a more elaborate analysis of this case in which
the quantity @® is replaced by a function of z,
rather than by a constant, leads to a value for
Cp that is about 10 percent smaller than indicated
by equation (88). This result corresponds very
closely with the results of the present calculations.

The approximate theory of Miles (ref. 39)
described briefly here in the scction on cone-
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Firoure 32.—Varialion of Cp/r?2 with thickness ratio for
the front half of a parabolic-arc body at Mach number
1, as indicated by present theory, by other theoretical
results, and by experiment.
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cylinders also contains a general expression for
the calculation of the pressure drag of the forepart
of a smooth slender body of revolution in a flow
with free-stream Mach number 1. Miles’ expres-
sion, which appears to lead, in general, to very
small values for the drag of smooth bodies, reduces
to the following expression when applied to the
front half of a parabolic-arc body:

(',=0.073572 (89)

This result is also plotted in figures 31 and 32
from which it is immediately apparent that these
values for Cp are much smaller than either the
experimental values or the calculated values
indicated by the present theory or by the theory
of Oswatitsch and Keune.

APPLICATION TO COMPLETE PARABOLIC-ARC BODY

The calculation of the pressure distribution
along the entire length of a complete parabolic-arc
body for free-stream Mach number 1 represents an
interesting application of the procedures deseribed
in the preceding pages. The pressure distribution
on the front half of such a body is, of course, the
same as discussed at length in the preceding see-
tion. Although the procedures can be used to
calculate the pressures af points somewhat rear-
ward of the middle of the body, they cannot be
used to calculate the pressures along the entire
length of the body. The reason is that the velocity
reaches a maximum at a point somewhat rearward
of the middle, and then decreases continuously
along the remainder of the body, thereby violating
the condition imposed by equation (46) that du/or
or Ap be positive. The flow, moreover, is subsonic
in the vicinity of the rear tip.

The pressure distribution along the entire Iength
of a parabolic-arc body can, nevertheless, be caleu-
lated by considering the solution in sections and
joining together the various results in the same
manner as described for the cone-cylinder. This
procedure is quite analogous to the procedures
commonly employed in many other theoretical in-
vestigations of transonic flows in which the condi-
tions in the subsonic region and a restricted part of
the adjacent supersonic region are computed using
hodograph or relaxation methods and the solution
for the remainder of the supersonic region is com-
puted by the method of characteristics. The fol-
lowing discussion is organized accordingly into

*

three parts concerned, respectively, with transition
through sonic velocity on the forebody, supersonic
flow on the afterbody, and subsonic flow in the
vieinity of the rear tip.

Transition through sonic velocity on the fore-
body.—A principal feature of the flow on the
forward part of a body is the smooth transition
from subsonic velocitices at the nose to supersonic
velocities near the middle of the body. Tt is amply
demonstrated in the preceding section that equa-
tion (87) can be used together with equation (3) to
calculate the pressure distribution on the front half
of a parabolic-arc body of revolution. The same
procedures can also be applied to caleulate the
pressures at points somewhat rearward of the
middle. Such calculations have been made for
each of the five parabolic-arc bodies of fineness
ratio 6, 642, 10, 12, and 14 for which experimental
results are available from references 11 and 14.
The caleulated results are summarized in table IV,
The pressure distribution cannot be caleulated in
this way for points along the entire rear half of the
body since, as can be observed by examination of
equation (87), a discontinuity in du/dr, and hence
the slope of the pressure distribution curve, occurs
at the point on the rear of the body where S’/ (2)
vanishes. This equation shows, morcover, that
du/dx is zero just upstream and infinite just down-
stream of this point. The property is symptomatic
of the breakdown of the approximation furnished
by equation (87) and signals that the use of this
relation should be terminated at some point more
forward along the length of the body. As a conse-
quence, the results enumerated in table IV for four
of the five bodies considered are terminated well
forward of the point on the rear of the body where
S"(x) vanishes. The results for the fifth body,
namely that of fineness ratio 10, are given for all
points back to that at which $”/(x) vanishes in
order to illustrate certain features in the discussion
of the supersonic flow on the afterbody. The
results for the body of finencss ratio 10 are shown
graphically m figure 33.

Supersonic flow on the afterbody.—The calcula-
tion of the pressure distribution on the portion of
the remainder of the body along which the local
velocity is supersonic can be continued by appli-
cation of equation (42) rather than equation (87).
Inasmuch as these two equations arc based on
somewhat different approximations, the two sets
of results cannot be expected to continue analyti-
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Ficure 33.—Dressure distribution on the forward part of
a parabolic-arc body of revolution at Mach number 1,
as indicated by equation (87).

cally into each other at the point at which the two
sets of results are joined. The determination of
the point at which both ', and dC,/dx match can
be accomplished in a simple manner once a series
of values for u for various stations along the length
of the body has been caleulated by numerical inte-
gration of equation (87). Substitution of these
values into equations (42) and (87) leads to two
sets of values for du/dr, each of which defines a
single curve when plotted as a function of x/] as
llustrated in figure 34 for the special case of the
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Fraure 3+4.—Illustration of graphieal technique for sclect-
ing the point at which the solution obtained by equation
(42) is to be joined to that obtained by equation (87).

parabolic-arc body of fineness ratio 10, As can be
seen, the two curves intersect at a certain point,
in this case situated at a value for z/l of about
0.542. Since the two values for u and du/dr and
henee €, and dC,/dx are the same at the point of
intersection whether calculated using equations
(42) or (87), this point determines the desired loca-

tion of the point at which the two solutions are to
be joined. The procedure has been followed in the
present caleulations except for the slight simplifi-
cation introduced by joining the solutions at the
nearest point for which values for ', are given in
table IV. This simplification results in a slight
mismatching of the values for dC,/dx, but the
effects are small since it follows from the fact that
these values for (', are given for every 2 percent of
the body length that the point at which the two
solutions are joined is at most only 1 percent of
the body length from the point at which the two
ralues for dC,/dr are exactly the same.

Once the point at which the solutions are to be
joined and the associated value for u at this point
are determined, the calculation of the pressure dis-
tribution on the remainder of the region of super-
sonic flow on the afterbody can proceed in a
straightforward manner by application of any of
the many standard methods available for the nu-
merical integration of equation (42). Table V pre-
sents the results of such calculations performed by
the method of Milne (ref. 9) deseribed in a previ-
ous section of this report, for cach of the five
parabolic-are bodies of fineness ratio 6, 6 42, 10,
12, and 14. The caleulations for the body of fine-
ness ratio 10 were carried out for points situated
upstream as well as downstream of the point at
54.2 percent of the body length at which the solu-
tions were joined in order to investigate the degree
to which the two approximate solutions overlap.
The results are shown graphically in figure 35. It
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Fraure 35.—Pressure distribution on a parabolic-are
body of revolution at Mach number | as indicated by
equation (87) and by equation (42).

can be seen thal the two sels of results agree very
well over a substantial fraction of the length of the
body. They indicate that the selection of the
point at which the solutions are joined is not criti-
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cal, and that the approximation afforded by use of
cither equation (42) or (87) is very nearly the
same provided the values for neither u nor du/or
approach too close to zero.

It can be seen from the results presented above
that the region of supersonic flow does not extend
all the way to the rear tip of the body. TInstead,
the flow decelerates and reaches sonic velocity
al a point somewhat forward of the rear tip, for
example at 86.3 percent of the body length.
The procedures described above terminate at
this point since u is zero and the quantity
In(M2—1+ku) in equation (42) leads, at 37, =1,
to a logarithmic infinity in du/dx.

The termination of the supersonic region for-
ward of the rear tip of a parabolic-are body and
the great increase in the value of du/de as the
sonic point is approached are similar to the be-
havior indicated both by the present calculations
for Mach numbers greater than unity and by
results calculated by the method of characteristics
in reference 42, Most of the examples presented
are for Mach numbers considerably greater than
unity, but one example is included in this reference
in which an approximate solution is determined
for a parabolic-arc body of fineness ratio ¢ in a
flow with frec-stream Mach number 1. Inasmuch
as the method of characteristies is appropriate
only in a region where the flow is supersonie, it is
necessary in this particular example to introduce
some other procedure for the determination of
the solution for the region of subsonic flow that
exists In the vicinity of the forward part of the
body. It isimportant that a good approximation
be used since the results not only determine the
-alues for the subsonic region, but also affect the
ralues caleulated by the supersonic region as well.
The reason is that the initial values required to
start the calculations with the method of charae-
teristics at the upstream boundary of the super-
sonic region must be provided by the solution for
the subsonic region. The particular method
used by Oswatitsch was the lincarized theory for
sonic flow deseribed in references 19 and 20 which
follows from the cquations giver herein upon
replacing Ap in equation (47) by the constant
value indicated by ecquation (50). The results
given by Oswatitsch are shown in figure 36
together with the corresponding results indicated
by the present calculations for the same body.
It can be seen that the two theoretical results arc

“—-Oswatitsch, ref.{42)

Fieure 36.—Pressure  distribution on a parabolic-are
body of revolution at Mach number 1 as indicated by
present theory and by other theoretical results.

in essential agreement with regard to the details
of the behavior of the solution in the vicinity of
the rear sonic point. The slight discrepancies
between the t(wo results over the forward and
middle portions of the body are associated with
the sclection of an appropriate value for \p, and
would be less if the calculations were repeated
using a smaller value for X, as advocated by
Keune in references 21, 22, and 23 and by Maceder
and Thommen in reference 26, as discussed in
connection with figures 26 and 27.

Subsonic flow near rear tip. —The results pre-
sented in the preceding scction clearly indicate
that the flow along the surface of a parabolic-arc
body of revolution decelerates smoothly and
continuously from a maximum supersonic velocity
at about two-thirds of the body length to sonie
velocity at a point definitely forward of the rear
tip. It is known, furthermore, that the flow in
the immediate vicinity of the rear tip must be
subsonic. Little more has been established pre-
viously regarding the nature of the solution in this
region. It is evident, however, that two possi-
bilities exist regarding the nature of the transition
from supersonic to subsonic flow along the body
surface. The transition may be accomplished in
a discontinuous manner involving one or more



38 TECHNICAL REPORT R—-2—NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

shock waves that extend to the body surface, as
is familiar in two-dimensional flows at Mach
numbers somewhat greater than the critical (see
rof. 13 for a theoretical analysis of such cases);
or it may be accomplished in a continuous manner
with a smooth deceleration through sonie velocity,
as is indicated by the first- and second-order
approximations for supersonic flow past a para-
bolic-are body illustrated in figures 11 and 12. Tt
should be understood that shock waves are present
in the flow ficld in both cases, but do not extend
to the surface of the body in the case of smooth
deceleration through sonic velocity.

Tt is assumed in the present investigation that
the transition from supersonic to subsonic flow
along the surface of the body is of a continuous
nature and that the results calculated in the
preceding section are applicable right up to the
sonic point. It is assumed, furthermore, that
the results for the subsonic flow along the remain-
der of the body can be calculated by means of
equation (29). This equation is uscful for the
analysis of subsonic flows, but cannot be applied
to supersonic flows because of the presence of the
term In(1—A3M.*—ku). This term leads, more-
over, to a logarithmically infinite value of du/dz
at the sonic point. It follows from these prop-
erties that the two sels of values for the ordinate
u and the slope dufdx calculated by use of cqua-
tions (29) and (42) match when joined at the
sonic point. The two sets of resulls do not
overlap, as in the cases described in the preceding
section, since the regions of applicability of
cquations (29) and (42) both terminate abruptly
at the sonic point. Tt should be remarked
before proceeding to the discussion of the detailed
results of the flow at the rear of the body that
the logarithmically infinite deccleration at the
sonic point is not altogether unreasonable phys-
jcally since it may be that such a behavior
represents the vanishing influence of a shock
wave that exists in the flow field but does not
quite extend to the body surface. The experi-
mental investigation of such a detail would be a
difficult task because the presence of the boundary
layer would probably modify the phenomenon
to such an extent that considerable uncertainty
would be introduced into the interpretation of
the results.

The pressure distribution on the rear of each of
the five parabolic-are bodies considered in the pre-

ceding sections has been calculated by use of equa-
tion (29) in the manner described above. The re-
sults were determined again by application of
Milne’s method.  The only part of the calculation
that remains to be described is the detail by which
the starting value was determined so that the solu-
tion of equation (29) would indicate the same
sonic point as the solution of equation (49). It is
immediately ‘evident that a special treatment of
some sort istnecessary because the oceurrence of
infinite values for du/dz at the sonic point imposes
a definite limit on the radius of convergence of a
power series expansion of the solution such as em-
ployed hercin in the previous applications of
Milne’s method.

The first step in the procedures that were used
in the present calculations is to increase the pre-
cision with which the sonic point is located. This
is desirable because the results for the supersonic
region summarized in table V were calculated for
intervals of 2 percent of the body length, and
thereby leave a possible uncertainty of nearly
cqual magnitude in the precise location of the
sonic point. The desired increase in precision
could, of course, be attainable by introducing
smaller intervals in the application of Milne's
method, but this is rather inconvenient because 1t
is necessary to repeat the starting procedure or to
use interpolation formulas every time a smaller
interval is introduced. Although such a reduc-
tion in interval size can be more readily accom-
plished with certain alternative numerical meth-
ods such as the Runge-Kutta method, the desired
increase in detail near the sonic point was achieved
in the present calculations by a careful application
of the numerical and graphical method of isoclines.
This procedure has special merit in the present
application since it is not only capable of locating
the sonic point when proceeding in the downstream
direction from the last point in the supersonic
region for which the results have been calculated
by Milne’s method, but is also very convenient for
the continuation of the calculation into the sub-
sonic region for a sufficient distance downstream
from the sonic point that the remainder of the
calculation can again be accomplished with the
numerical method of Milne.

The nature of the singularity at the sonic point,
and the details of the manner in which the solu-
tions of cquations (29) and (42) match when
joined at this point arc illustrated in the series of
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successive enlargements of the isocline plots shown
in figure 37 for the body of fineness ratio 10. It
can be seen that there is an extremely small region
in which the values for du/dx are large and that
the values for du/dr are remarkably similar at
short distances upstream and downstream from
the sonic point. The method of isoclines was used
to calculate the solution for the portion of the
body that extends from about 85 to 89 percent of
the body length. The results for the remainder
of the body were calculated using the method of
Milne with intervals of 1 percent of the body
length. The numerical results are summarized in
table VI, and a plot of the pressure distribution
for the complete parabolic-arc body of fineness
ratio 10 is shown in figure 38. It can be seen from
this plot that the local effects associated with the
infinite deceleration at the sonic point are of such
small magnitude and extent that they cannot be
represented on a plot of this scale. The corre-
sponding results for the rear parts of the other
parabolic-arc bodies of fineness ratio 6, 6 2, 12,
and 14 have also been computed in the same way.
The results of these calculations are also summa-
rized in table VI,

Summary and discussion of results.—The calcu-
lations described in the preceding sections provide
a set of values for the pressure coefficient C, at
free-stream Mach number 1 for points spaced at
intervals no greater than 2 percent of the body
length along the surface of each of five parabolic-
arc bodies having fineness ratios of 6, 6¢2, 10, 12,
and 14. These results are shown graphically in
figure 39 together with the experimental results
from references 11 and 14 for parabolic-arc bodies

truncated at about 5/6 of the length, as indicated
It can be seen that the the-

by the dashed lines.
oretical and experimental results are in cssential
agreement, and that the principal diserepancies
arc confined in each case to a small region in the
immediate vicinity of the base of the body. This
discrepancy is undoubtedly associated, for the
bodies of fineness ratio 6 and 6y2, with the occur-
rence of a shock wave that must be detached from
the corner because the local Mach number is too
small.
bodics, although it would appear from inspection
of the data shown in figure 5 that the phenomena
involved are not too different from thosc for the
bodies of fineness ratio 6 and 64/2.

Comparison of the calculated results for the

The situation is not so clear for the other

parabolic-arc bodies of different fineness ratio
reveals that the values for the pressure coefficient
C, vary with thickness ratio 7 in a manner that is
very nearly in accordance with the similarity rule
given by equation (12). This fact is illustrated
in figure 40 in which are plotted the pressure dis-
tribution for a parabolic-arc body of fineness ratio
10 as determined by direct calculation, and by use
of the similarity rule together with the calculations
for the bodies of fineness ratio 6, 61/2, 12, and 14.
The five curves would coalesce to form a single
curve if the results of the present calculations were
in perfect agreement with the similarity rule. It
can be seen that the five curves do not coalesce
perfectly onto one line, but the deviations there-
from are small for the range of thickness ratios
considered. This result is very similar to that
stated previously in the discussion of the cone-
cylinder at free-streamm Mach number 1, but quite
different from the behavior of the present results
for Mach numbers in the vicinity of the critical.
Pressure drag.—A value for the pressure drag
for each of the five parabolic-arc bodies for which
the pressure distribution is given in the preceding
section has been calculated by numerical integra-
tion of equation (13). The resulting values for
Cp=D/[(p=/2) U,%S,] at Mach number 1 are

jd 6 6v2 10 12 14

Cp | 0.2485 | 0. 1288 0. 09343 |0. 06534 | 0. 04675

These values are plotted as a function of r in figure
41. The corresponding values of Cp/7? are plotted

"~ as a function of r in figure 42 to illustrate that

(p is very nearly proportional to the square of r as
indicated by the similarity rule given by equa-
tion (14).

Two additional sets of values for ) for com-
plete parabolic-arc bodies are also included in
figures 41 and 42 for purposes of comparison.
Both of these should be considered as more ap-
proximate than the present results since they are
derived through considerations involving the
linearized theory for sonic flow given by Oswatitsch
and Keune in references 19 and 20. Straight-
forward application of that theory to a body that
is pointed at the nose and is either pointed or
cylindrical at the stern leads to the simple con-
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clusion that the value for ), at free-stream NMach
number 1 is exactly half that indicated for super-
sonic Mach numbers by linearized compressible
flow theory. This result holds, independently of

7 . the particular value selected for @* in equation (50),
4 - - = and leads to the following expression for €, for a
N . . .
5 AR 2o I U NS NN (A complete parabolic-arc body in a flow with free-
' stream Mach number 1.
B0 T T2 34T 5 6 7 8T 3 o

o1 s Cp=(16/3)7* (90)

F16uRrE 38.—Pressure distribution on a parabolic-are . - .
body of revolution at Mach number 1 as indicated by ~ Oswatitsch and Keune mention the general con-
present theory. clusion stated above as a purely formal conse-
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Frouvre 39.-—Pressure distributions on parabolic-are bodies of various fineness ratios at Mach number 1 as indicated by
present theory and by experiment.
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FioURE 40.—Pressure distribution on a parabolic-are
body of fineness ratio 10, as obtained by direct calcula-
tion using the present theory and by use of the similarity
rule.
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Ficure 41.—Variation of pressure-drag coefficient with
thickness ratio for a parabolic-are body at Mach num-
ber 1, as indicated by present theory and by other
theoretical results.
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Frcure 42-—Variation of Cp/r? with thickness ratio for a
parabolic-arc body at Mach number 1, as indicated by
present theory and by other theoretical results.

quence of the theory, but suggest that approval of
the result be withheld for bodies with a pointed
stern until a check is made to ascertain whether
the assumption of approximately constant accel-
eration would hold near the rear of such bodies.
It is evident from inspection of the theoretical or
experimental pressure distributions summarized
in figure 5 that this condition is not approached,
even in a qualitative sense, since Qu/0z is positive
along the forward part of the body, but negative
along the rear part. The same property is ex-
hibited by the related results calculated by the
method of characteristics that are shown in
figure 36, as well as by similar results given in
reference 43 for additional examples. It is shown,
furthermore (refs. 25 and 26), that even the results
calculated by use of the linearized theory for sonic
flow display negative values for Qu/dz over the
rear of a parabolic-arc body in spite of the fact
that du/dr is replaced by a positive constant in
the derivation. Maeder and Thommen have
nevertheless advocated in references 25 and 26,
that equation (88) be used to calculate the pressure
drag of a parabolic-arc body of revolution in a
flow with free-stream Mach number 1. Tt can be
seen that the values for O indicated by equation
(90) are much smaller than those indicated by the
present calculations.

The second additional set of values for Cp
included in figures 41 and 42 has been calculated
by a simple rule proposed in reference 43. It
states that the value for O for a body of revolu-
tion in a flow with free-stream Mach number 1
is equal to the sum of half the supersonic drag of
the forebody plus the full value of the supersonic
drag of the afterbody. The values for the super-
sonic drag are to be calculated in both instances
by means of the linearized theory of compressible
flow, and theline of demarcation between the fore-
body and afterbody is taken lo be the station of
maximum diameter. This rule is not established
by a deductive process, but is proposed as a
generalization, approximate in nature, of observa-
tions of specific results calculated for three different
bodies. Application of this rule to the specific case
of a parabolic-arc body of revolution leads to the
following expression for Cp:

p=(25/3)7* 91
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It can be seen upon inspection of figures 41 and
42 that the values for Cp indicated by equation
(91) are somewhat smaller than those indicated
by the more elaborate calculations of the present
investigation. It should be pointed out that this
comparison does not fully represent an additional
test of the rule, however, since the parabolic-arc
body considered here is one of the three cases
used by Keune and Oswatitsch in the establish-
ment of the rule. It appears to the present
authors, in spite of the moderate suceess of this
rule in the three cases considered to date, that the
final decision regarding the general applicability
of this rule should be withheld until either similar
comparisons arc made for a much larger class of
bodies or a better understanding of the funda-
mental basis for the rule is discovered.
Comparison with results for subsonic and
supersonic flow.—The remainder of this report is
concerned with a discussion of the relation be-
tween the results calculated for a parabolic-are
body of revolution for Mach number 1 and those
calculated for other Mach numbers. The results
for both pressure distribution and drag will be
considered, but attention is confined to the case
of a body of fineness ratio 10. Although all of
the results required to make similar comparisons
for bodies of other fineness ratios have not been
determined, it is presumed that the relations
among the results for various Mach numbers will
remain qualitatively the same. Figure 43 shows
a comparison of the pressure distribution cal-
culated for Mach number 1 and those calculated
for the upper and lower critical Mach numbers.
It can be seen that the results for Mach number 1
are qualitatively similar to those for the lower
critical Mach number along the forward part of

-2

FIGURE 43.—Pressure distributions on a parabolic-are
body of revolution at the upper and lower critical Mach
numbers and at Mach number 1.

the body, and qualitatively similar to those for
the upper critical Mach number along the rear
part of the body. The results for various Mach
numbers are displayed in a second manner in
figure 44 which shows the variation of the pressure
coefficient with Mach number for several selected
points along the surface of the body. Two addi-
tional curves are included on this plot to show the
variation with Mach number of the pressure
coefficients corresponding to the occurrence of

sonic velocity (i.e wfU _ =M. at the
HR b TR
midpoint and at the nose of the body. It can

be seen that the line segments for the surface
pressures could be connected by reasonably
smooth curves for points along the front part of
the body, but not for points along the rear part.
This situation is similar to that encountered in
the analysis of transonic flow around airfoils (see,
e.g., ref. 13) and it is known that the necessary
adjustment is achieved, in an inviscid {low, in a
discontinuous manner involving a shock wave
that extends to the surface of the body. The
presence of the boundary layer in a viscous flow
softens the discontinuous change indicated by the
inviscid theory, but the general behavior is other-
wise much the same. The actual existence of
such effects for the special case of a parabolic-are
body of revolution is clearly demonstrated experi-
mentally by the data reported in references
11 and 14,

The variation with Mach number of the pressure
drag coefficient for a parabolic-arc body of fineness
ratio 10 is shown in figure 45. The small circles
represent the values for the drag coeflicient of
the complete body as indicated by the present
theory. The numerical values are

Mei 121 I 1.22 I 1. 23 ‘ 1. 25 ’ 1. 30 1. 40

Cp 0. 1153 [0. 1149 (0. 1146 |0. 1142 |0. 1133 |0. 1122

The dashed line of figure 45 that is adjacent to
the small circles represents the values calculated
by use of the following expression that results
from both first- and second-order supersonic
slender-body theory.

Cp=(32/3) 7 (92)
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FIrcvrE 44— Variation of pressure coefficient with Mach number at various stations along the length of a parabolic-are
body of fineness ratio 10, as indicated by present theory.

e ) Foraboiic urc, 1/d-10
LT

v to-

/7777 /s

08 £ — S iR S s B —
) I (Fg (04
D 1 e
09— -
SR I b
10 L1 i.2 i3 1.4

Mo

Freure 45.  Variation of the pressure-drag coefficient
with Mach number for a parabolie-are body of fineness
ratio 10, as indicated by present theory and by other
theoretical results.

It can be seen that the values indicated by the
present theory are slightly greater than those
indicated by equation (92).

A second set of caleulated results, indicated
by small squares, is included in figure 45 to repre-
sent the contribution to the drag that arises
from the forces on the front half of the complete
body. The numerical values are

]

Mo} 1.21 l 1.22$ 1. 23 ‘ 1.25 1. 30 1. 40

|
i |
. os00do. ossrs

Cp 10. 04943]0. 04922/0. 04004;0. 04878/0. 04832(0. 04783

| !

The adjacent dashed line in this figure represents
the values calculated by means of the following
relation provided by first-order slender-body
theory

Cy=(14/3)7 (93)

This result shows once again that only about half
of the drag rise of a half body oceurs at Mach
numbers less than unity; whereas the previous
result shows that nearly all of the drag rise of a
complete parabolic-are body occurs in the same
range of Mach numbers.

A third set of calculated results, indicated by
small diamonds, is also included in this figure to
represent the contribution to the drag coefficient
that arises from the forees on the front three-
fourths of a parabolic-arc body. The numerical
results are
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Mo| 1.21 122 1. 23 1.25 1. 30 1. 40

Cp 0. 09508/0. 09455/0. 09406/0. 09320/0. 09147/0. 08808

The adjacent dashed line represents the values
mdicated by the first-order slender-body theory
which have been calculated with the aid of the
following expression:

1 M 211
e 1y Y He 71 7
T (1 4 In 3 ) (94)

Although it is clear from this expression that the
drag is not independent of the free-stream Mach
number, as in the case of the complete body and
also the half body, it can be seen from figure 45
that the effect is very small.

v
¢ n=

W o

CONCLUDING REMARKS

It has been amply demonstrated in the preceding
pages that the approximate method for the solu-
tion of the nonlinear equations of transonic flow
theory deseribed in reference 4 can also be ap-
plied to axisymmetric flows. Asin the case of two-
dimensional flows, the results are shown, by com-
parison with experimental and other theoretical
results, to be of almost surprising accuracy con-
sidering both the small perturbation and slender-
body approximations inherent in the fundamental
equations of the theory and the novel nature of
the procedures used to obtain a simple approxi-
mate solution of these equations.

The results of this investigation are of interest
not only because of the frequent use of a body of
revolution in aeronautical design, but also because
of the central role of the body of revolution in
applications of the transonic arca and equivalence
rules.  The best known of these rules is probably
that for wave drag discovered experimentally by
Whitcomb and announced in reference 1; but
recent developments (ref. 3 for a résumé) cnable
the ready calculation of not only the drag, but also
the pressure distribution and other acrodynamic
properties of slender wings, bodies, wing-body
combinations, etc., provided that the pressure
distribution is known for the equivalent nonlifting
body of revolution having the same longitudinal
distribution of cross-section area. Thus the
utility of these rules is greatly increased by the

availability of the methods described in this paper
for the calculation of the pressure distribution on
the equivalent body. Although no examples of
such an application are given in the present paper,
the results for a simple case involving a thin elliptic
cone that resembles a delta wing are given in
reference 5.

While the development of a reliable theory for
the prediction of the acredynamic properties of
bodies of revolution in transonic flow is a subject
primarily of interest to acrodynamicists, it would
scemn to the authors that the method of approxima-
tion and some of the results for specific applica-
tions might also be of interest to mathematicians
concerned with the solution of nonlinear partial
differential cquations. It should be remarked in
this connection, that the method of approximation
is only described briefly and from a simple heuristic
point of view, in the present paper. Those inter-
ested in a further discussion of the method from
a number of alternative points of view are referred
to the appendix of reference 4. The latter dis-
cussion is for two-dimensional flow, but the neces-
sary extension to axisymmetrie flow can be ac-
complished directly without the introduction of
any new concepts. While it is hoped that the
discussion of the method of approximation pre-
sented in reference 4 is illuminating and helps to
make the procedure more plausible than does the
brief account presented herein, the underlying
reason for the success of the method remains only
incompletely understood from a mathematical
point of view. On the other hand, the demon-
strated ability of the method to nearly reproduce
the results of available, but far more complicated,
theories and of experiments should be sufficient to
warrant further mathematical study.
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TABLE I..-RESULTS OF CALCULATIONS FOR PARABOLIC-ARC BODY OF FINENESS RATIO 10 AT
SUBCRITICAL MACH NUMBERS (PURELY SUBSONIC FLOWS)

p (8) Mo =070 (b) Mo =080 (¢) Meo=085 (d) Meo=090
z -
WU A/29 Gy W U A2 C, WU 8/29 fol w/ U 429 Ch

0.0113249 |—0. 125623 | —0. 0001566 | 0. 213038 || —0. 130500 |—0.0001565 | 0. 222809 ||—0. 133829 |—0. 0001565 | 0. 229450 || —0.138118 |—0. 0001565 | 0. 238027
.0313249 | —.093009 | —. 0000166 | .151054 || —.097572 | —.0000165 | .150998 || —.100641 | —.0000165 | .166136 || —. 104643 | —.0000165 | 174141
0513249 | —.074023 | —. 0000041 | . 115836 || —.078039 | —. 0000041 | .123868 || —.080822 | —. 0000041 | .120434 || —.084400 | —.0000041 | .136770
.0713249 | —. 059443 | —. 0000014 . 089485 —. 062978 | —. 0000014 . 096554 —. 065451 | —. 0000014 . 101500 -, C68746 | —.0000014 . 108091
0013240 | — 047376 | —. 0000006 | .068030 || —. 050412 | —. 0000006 | 074102 || —. 052557 | —.0000006 | .078392 || —.055449 | —.0000006 | .084175
1113249 | — 037000 | —. 0000003 | .049830 || —.039528 | —.0000003 | .054884 || —. 041331 | — 0000003 | .058490 || —.043700 | —.0000003 | .063409
1313249 | —. 027886 | —.0000002 | 034024 || —.020000 | —. 0000002 | .038052 || —.031350 [ —.0000002 | .040953 || —.033353 | —.0000002 | .044959
1513240 | —. 019773 | —.0000001 | .020005 || —.021274 | —. 0000001 | .023086 || —.022365 | —.0000001 | .025278 || —.023891 | —.0000001 | .028330
1713249 | —. 012495 | —.0000001 | .007705 || —.013486 | —.0000001 | .009688 || —. 014213 | —.0000001 | .0I1142 || —. 015244 | —.0000001 | .013204
1913249 | —. 005932 —. 003380 —. 006422 —. 002401 —. 006785 —. 001676 —. 007305 . 000634
2113249 | 0 —.013333 || o —.013333 || 0 ~.013333 || o0 .013333
. 2313249 | . 005366 —.022282 || . 005841 —.023231 || . o006198 —.023947 || .006728 —. 025002
2513240 | 010216 | 0000000 |—. 030327 || .o11147 | .0000G0D [—. 032188 || . 011854 | .0000000 |—.033602 || .012911 | .0O0DOOO |—.035717
. 2713249 . 014589 . 0000000 [—. 037546 . 015954 . 0000000 {—. 040274 . 016099 . 0000000 | —. 042365 . 018584 . 0000000 | —. D45534
2913240 | 018517 | 0000000 |—.044001 || .020200 | .0000000 |—.047548 || 021659 | .0000000 [—.050286 || .023763 | .0000000 |—.054493
3113240 | .022023 | .0000000 |—.049743 || .024179 | .0000000 |—.054053 || .025854 { .0000000 |—.057404 || 028462 | 0000000 |—.062620
3313249 | 025130 | 0000000 |—.054813 || 027637 | .0000000 |—.059825 || .020508 | .00DDO00 |—.063749 || 032690 | .0O0OODO —.069932
. 3513249 . 027854 . 0000000 |—~. 059245 . 030679 . 0000000 |—. 064894 . 032903 . Q00D000 | —. 069343 . 036450 . 0000000 . 076437
3713249 | 030209 | 0000000 [—.063066 || .033317 | 0000000 |~.060283 || .035777 | .0000000 |—.07T4204 |; .038745 | .0000000 |—.082130
3013240 | 032205 | 0000000 |—.066209 | 035560 | .0000000 |—. 073000 || .03%228 | .0000000 |—.07TR345 || .042573 | .0O0000O |—.087035
4113249 | 033852 | .0000000 [—.068963 || .037415 | .0000000 |—. 076087 || 040259 | 0000000 |—.OBITH .044031 | 0000000 |—. 091121
4313240 | 035158 | 0000000 |—.071070 | .038887 | .0000000 |—.078530 || .041875 | 0000000 |~.084505 || .046818 | .000000D —.0943%
4513249 | 036127 | .0000000 |—.072633 | .030082 | .0000000 |—.080344 || .043078 | .0000000 |—.0BG536 || 048228 | .0O0D0OO |—.096836
4713240 | 036764 | 0000000 |—.073659 || .040703 | .0000000 |—.081537 || .043871 | .0000000 |—.087873 || 049160 | .0OOO00O [—.098452
4013240 | 037071 | .0000000 |—. 074153 | .041050 | .0000000 |—. 082112 || .044253 | 0000000 |—. 088518 || .049611 ; .0D0000O {—.099233
5113249 | 037040 | .0000000 |—.074118 {| .041025 | .0000000 |—.082071 || 044226 | .0000000 [—. 088472 || 040579 | 0000000 |—. 099178
5313240 | 036608 | .00D00000 |—.073554 || .040628 | .0000000 |—. 081414 i .043789 | .0000000 | —.087736 || .049064 | .0O0000Q |—. 098286
3513248 | .036018 | .0000000 |—.072457 || .039859 | .0000000 |—.0S0139 I] .042043 | .0000000 |—.086307 | .0480CD | —.000DDOO |—. 096550
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TABLE I.--RESULTS OF CALCULATIONS FOR PARABOLIC-ARC BODY OF FINENESS RATIO 10 AT
SUBCRITICAL MACII NUMBERS (PURELY SUBSONIC FLOWS)—Concluded

" (e) Mw=092 ) Mou =093 (®) Mo =0.934 (h) Mo =0.935
z,
U/ Ux A)20 Cp %/ Uw Af29 Cp %/ U Af29 Cp %/ Ve A/29 Cy

0.0113245 | —0.140235 | —0, 0001565 | 0. 242261 |; 0. 141412 | —0. 0001565 | 0.244616 || —0. 141009 | —0.0001565 | 0.245610 |} —0. 142036 [0, 0001565 | 0. 245863
.0313249 | —. 106637 | —. 0D00165 L178120 |1 —. 107751 | —. 0000165 180357 || —. 108222 | —, 0000165 L181300 || —. 108344 | —. 0000165 . 181543
.0513249 | —.086335 | —. 0000041 , 140461 |} —. 087372 | —. 0000041 .142534 |} — 087812 | —. 0000041 .143414 || —. 087924 | —, 0000041 . 143639
.0713249 | —.070422 | —. 0000014 | . 111443 |} —. 071370 | —. 0000014 | .113337 {| —. 071773 | —. 0000014 .114144 ;| —. 071876 | —. 0000014 . 114351
.0913249 | —.056036 | —. 0000006 | . 087150 | —.057782 | —, 0000006 | .088843 || —. 058144 | —. 0000006 | .089566 || ~. 058237 | —. 0000006 . 089752
L1113249 | —. 045071 | —. 0000003 | 065972 || —. 045806 | —. 0000003 | .067440 || —. 046121 | —.0000003 | .068070 || —. 046202 | —. 0000003 | . 068233
L 1313249 | —.034411 | —. 0000002 .047074 || —. 035022 | ~. 0000002 . 048297 || —.035285 | —. 0000002 . 048824 —. 035353 | —. 0000002 . 048859
.1513249 | —. 024708 | —, 0000001 . 029963 || --. 025184 | —. 0000001 . 030016 || —. 025390 | —. 0D00DOL .031329 || —. 025444 | —. 000000 . 031436
V1713249 | —. 015804 | —. 0000001 . 014324 {j —. 016134 | —. 0000001 .014984 | —. 016278 | —. 0000001 .015271 {1 —. 016315 | —. 0000001 . 015346
., 1913249 | —. 007593 —. 000059 [; —.007764 . 000284 || —. 007839 . 000434 || —. 007859 . 000473
L2113249 ; O -—. 013333 0 —, 013333 4] —. 013333 0 —. 013333
. 2313249 . 007027 —. 025605 . 007212 —. 025974 . 007294 —. 026138 . 007316 . 026181
L 2513249 . 013527 . 0000000 | —. 036048 . 013909 . 0000000 | —, 037713 . 014082 . 0000002 | —. 038058 014127 . 0000000 | —. 038148
L 2713249 . 019525 . 0000000 |—. 047416 . 020119 . 0000000 | —. 048605 . 020390 . 0000000 | —. 040147 . 020461 . 0000000 | —. 049290
. 2613249 . 025037 . 0000000 | —. 057042 . 025858 . 0000000 | —. 058683 . 026237 . 0000000 | —. 059441 . 026338 . 0000000 | —, 059042
. 3113249 . 030073 . 0000000 | —. 065847 . 031135 . 0000000 | —. 067967 . 031634 . 0000000 | —. 068963 031767 . 0000000 | —. 069229
. 3313249 . 034643 . 0000000 |—. 073838 . 035556 . 0000000 | —. 076463 . 036585 . 0000000 |—. 077721 L 036754 . 0000000 |—. 078061
. 3513249 . 038739 . 0000000 |—. 081014 . 040315 . 0000000 |—. 084167 . 041088 . 0066000 {—. 085713 . 041299 . 0000000 | —. 086135
L3713249 . 042358 . 0000000 ; —. 087364 . 044206 . D00000O | —. 091061 .D45137 | —, 0000000 ; —. 092023 . 045395 | —. 0000000 |—. 093440
. 3013249 . 045491 . 0000000 ; —. 092871 . 047613 | —. D00000Q | —. 097116 . 048718 | —. 0000000 : —. 099325 . 049031 | —. 0000000 | —. 099951
. 4113249 . 04R126 . 0000000 |— 097511 L050517 | —. 0000000 | —. 102292 . 051809 | —. 0000000 | —. 104875 . 052186 | —. 0000000 ; —. 105630
. 4313249 . 0A0251 . 0000000 |-, 101256 . 052890 . 0000000 |—. 106536 . 054380 | ~. 0000000 | —. 100515 . 054833 | —. 0000000 ;—. 110421
, 4513249 . 051850 . 0000000 | —. 104080 . 054703 . 0000000 | —. 100786 . 056390 { —. 0000000 | —. 113159 . 056933 | —. 0000001 |—. 114245
. 4713249 052813 . 0000000 | —. 105957 . 0535022 . 0000000 | —. 111977 L0577T —. 0000000 |—. 115690 , 058424 | —_ 0000001 |—. 116979
. 4913249 .053428 . 0000000 | —. 106868 . 056519 . 0000001 |—. 113051 . 058478 . 0000001 |—. 116968 . 059206 | —. 0000003 | —. 118424
. 5113249 . 053392 . 0000000 | —. 106804 . 056477 . 0000001 | —. 112074 . 058428 . 0000005 | —. 116876 . 059153 . 0000010 | —. 118326
. 5313249 . (52803 . 0000000 | —. 105764 . 035706 . 0000000 |—. 111749 . 057633 . 0000004 | —. 115424 . 0538261 . 0000021 |—. 116680
. 5513249 .051669 | —. DDOO0OD | —. 103760 L 054548 | —. 0000019 {—. 109518 056158 | ~—. 0000005 |—. 112737 L 056692 | —. 0000024 |—. 113805
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TABLE IIL--RESULTS OF CALCULATIONS FOR PARABOLIC-ARC BODY OF FINENESS RATIO 10 AT
MACH NUMBIERS ABOVE THE UPPER CRITICAL (PURELY SUPERSONIC FLOWS)

@) Mo =121 (b) Mo =122 (¢) Mo—123
7/
B #Uw A/29 Cy 1/ Uco A28 Cp Wl A2 [

0.0113249 —0.122523 | —0.0000057 | 0.208838 —0.119625 | —0.0000021 | 0.201041 —0.117275 | —0.0000010 | 0.196342
0313249 —. 110329 —. 0000011 . 186513 —. 108363 —. 0000006 . 181582 —. 106645 —. 0000003 178144
.0513249 —. 099655 — . 0000004 L 167101 ~—. 098195 —. 0000002 . 164181 —. 096881 — . 0000002 . 161552
.6713249 —. 080884 —. 0000002 . 150385 - 088770 —. 0000001 . 148139 —. 087752 —. 0000001 . 146102
. (813249 —. 080765 —. 0000001 . 134808 —. 079914 —. 0000001 . 133106 —. 079127 —. 0000001 . 131532
1113249 —. 072163 —. 000000T . 120154 —. 671520 —. 0000000 . 118870 —. 070922 —. 0000000 117674
. 1313249 —. 063990 —. 0000000 . 106232 —. 063520 —. 0000000 . 105292 —. 063080 — . 0000000 . 104412
L 1513249 —. 056188 — . 0000000 . 092923 —.055863 i —.0000000 . 092273 — . D55557 -~ . 0000000 . 091662
1713249 —. (48715 . 0000000 . 080145 —. 048514 —. 0000000 L 079743 —. 048324 — . 0000000 . 079364
L 1913248 —. 041540 . 067835 —. 041447 . 067648 —. 041358 . 067471
\ 2113240 —. 034641 . 055049 —. 034641 . 055049 —. 034641 . 055949
. 2313249 —. 028001 . 044451 - 028082 . 044615 —. 028160 044771
. 2513249 —. 021606 . 0000000 033319 —. 021760 . 0000000 . 033626 —. 021806 . 0000000 .033918
. 2713249 —. 015450 . 0000000 . 022532 —. 015666 . 0000000 : . 022960 —.015873 . 0000000 .023379
. 2013249 —. 009524 . 6000000 . 012081 —. 009796 . 0000000 .012625 —. 010055 . 0000000 . 013144
. 3113249 —. 003827 . 0000000 . 001958 —. 004147 _o000000 | 002598 —. 004453 . 0000000 . 003210
. 3313249 L 001644 0000000 | —.007839 . 601282 .0000000 | —-.007115 . 000036 0000000 | —.006423
", 3513249 . 006886 0000000 | —. 017309 . 006488 0000000 | —. 016513 006107 0000000 | —. 015752
.3713249 . 011898 0000000 | —. 026446 , 011470 0000000 | —. 025588 . 011059 .0000000 | —.024768
. 3913249 Q18675 0000000 | —.035240 .016221 .0000000 | —.034332 LD15786 . .0000000 | —.033462
. 4113249 .021211 0000000 | —. 043681 . 020737 .0000000 | —. 042731 . 020282 —. 0000000 | —.041821
. 4313249 . 025499 0000000 | —. 051752 . 025007 .0000000 | —. 050770 024537 . 0000000 | —. 049828
L 4513249 . 020527 —. 0000000 | —.059434 020024 —. 0000000 | —.058428 L 028542 —. 0000000 | —.057464
4713249 . 033287 —.0000000 ; —.066705 . 032776 —.0000000 | —.065683 . 032256 —.0000000 | —.064704
. 4913249 . 036763 —.0000000 | —.073538 . 036249 —.0000000 | —.0T2510 . 035756 —. 0000000 | —.071524
5113249 . 039942 —. 0000000 | —. 079905 . 039428 —.0000000 | —.078877 . 038935 —. 0000000 | —.077861
L 5313249 . 042807 —. 0000000 | —. 085771 . 042297 —.0000000 | —. 084751 . 041808 —. 0000000 | —. 08377
. 5513249 . 045337 —. 0000000 | ~—.091096 . 044835 —. 0000000 | —.090092 . 044354 —. 0000000 | —.089130
. 5713249 LO47512 | — 0000000 | —.095761 047022 | —.0000000 | —.094780 . 046552 —. 0000000 | —.093%40
. 5013249 . 049307 —. 0000000 | —.099948 . 048831 —. 0000000 | —.098997 . 043376 —. 0000000 | —.098087
L 6113249 . 050693 —.0000000 | —.103368 . 050237 —. 0000000 | —. 102456 . 049800 —. 0000000 | —. 101583
. 6313249 . 051639 —. 0000000 | —. 106037 . 051206 —.0000006 | —. 105171 . 050791 —. 0000000 | —.104342
. 6513249 . 052109 —.0000000 | —. 107883 . 051703 —.0000000 | —.1070069 L051314 —.0000000 | —. 106292
. 6713249 . 052063 —.0000000 | —. 108823 . 051687 —.0000000 | —. 108070 . 051328 —. 0000000 | —.107352
L 6913249 . 051453 —.0000000 ; —.108763 .051111 —.0000000 ;| —. 108079 . 050785 —. 0000000 | —. 107428
7113249 . 050225 —.0000000 [ —. 107595 . 049921 —. 0000000 | —. 106088 049633 | —.0000000 | —. 106411
.7313249 . 048315 —. 0000000 | —. 105192 . 048054 —.0000000 | —. 104671 . 047808 —. 0000000 | —. 104177
7513249 . 045649 —.0000000 | —. 101405 045436 | —.0000000 | —. 10097 . 045234 —.0000000 | —. 100575
L 7713249 . 042137 —.0000000 | —.096053" .041976 —. 0000000 | —.095731 . 041825 —. 0000000 | —.095429
. 7013249 . 037671 —. 0000001 | —.088922 037567 | — 0000001 | —.088714 037472 | —.0000001 | —.0B8523
. 8113249 032118 | —. 0000001 | —. 079743 . 032076 —.0000001 | —.079660 . 032042 —.0000001 | —.079591
, 8313249 025306 | —.0000001 | —.068176 025334 | —.0000001 | —.068232 (025366 | —.0000001 | —.068297
. 8513249 .017016 —. 0000002 | —.053781 .017121 —. 0000002 | —.053990 .017227 —.0000002 | —.054202
L8713249 . 006049 —.0000004 | —.035960 L007T138 | —.0000004 | —.036339 . 007327 —. 0000004 | —. 036715
. 8913249 —. 005318 —. 0000007 | —.013866 —. 005032 —. 0000007 | —. 014438 —. 004752 —. 0000007 | —.014998
L 9113249 —. 020428 — . 0000015 . 013786 —. 020031 —. 0000015 . 012992 —. 019646 —. 0000015 . 012221
. 9313249 —. 039449 —. 0000036 . 049131 —. 038020 —. 0000036 . 048073 —. 0384089 — . 0000035 . 047052
. 9513249 —. 0A4442 —. 0000107 , 096292 —. 063743 —. 0000105 . 094805 —. 063074 —. 0000104 . 093557
. 9713249 —. 100636 —. 0000475 . 165728 ~. 099660 — . 0000464 . 163777 —. 088746 —. 0000456 . 161948
. 9913249
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TABLE TII.. -RESULTS OF CALCULATIONS IFOR PARABOLIC-ARC BODY OF FINEXNESS RATIO 10 AT
MACH NUMBERS ABOVE THE UPPER CRITICAL (PURELY SUPERSONIC FLOWS)—Concluded

" (d) Me=125 () Mw=130 ) Mw=1.40
z
U A/29 Cr WUw A/29 C, W Ue A/29 fo

0.0113249 | —0.113468 | —0.0000003 | 0.188727 || —0.106554 | —0.0000001 | O0.174890 || —0.097431 | —0.0000000 | 0. 156654
0313249 —.103712 | —.0000001 172279 —.098114 | —.0000000 . 161083 —.000448 | —. 0000000 . 145751
. 0513249 —. 094578 | —.000000L . 156946 —.090040 | —. 0000000 . 147870 ~.083650 | —. 0000000 135090
. 0713249 —.085038 | —.0000000 142474 —.082282 | —. 0000000 . 135162 —~.077022 | —.0000000 124642
. 0913249 —.077710 | —.0000000 . 128697 —.074805 | —.0000000 . 122888 —~.070552 | —. 0000000 . 114381
. 1113249 —.069836 | —.0000000 L 115501 —. 067580 | —.0000000 . 110990 —.064230 | —. 0000000 L 104288
. 1313249 —.062275 | —. 0000000 . 102802 —.060587 | —.0000000 | .099426 —.058049 | —.0000000 094350
. 1513249 —.054005 | —.0000000 090539 ~.053807 | —.0000000 | 088163 —.052002 | —.0000000 084553
1713249 —.047875 | —. 0000000 078665 —.047220 | —.0000000 077175 —. 046087 | —. 0000000 074891
. 1913249 —. 041194 067144 —. 040843 066441 —. 040301 . 066357
. 2113249 —~. 034641 055049 || — 034641 055949 —.034641 . 055949
. 2313249 — 023305 . 045060 : —. 028618 045687 ~.020108 . 046666
. 2513249 —. 022179 . 0000000 034464 | —.022772 . 0000000 . 035649 —~. 023703 . 0000000 037511
. 2713249 —. 016259 . 0000000 . 024151 —. 017100 . 0000000 025832 —. 018427 . 0000000 . 028487
. 2013249 —. 010541 . 0000000 014115 —. 011602 - 0000000 . 016237 —. 013284 . D00DD00 . 019601
. 3113249 —. 005026 . 0000000 004356 —. 006281 . 0000000 . 006866 —. Q08278 . 0000000 . 010860
. 3313249 . 000286 .0000000 | —.005124 —. 001139 0000000 | —.002274 —.003413 | —.0000000 . 002274
. 3513240 L 005392 .0000000 | —.014321 . 003820 .0000000 | —.OTLITH 001304 | —.0000000 | —.006145
. 3713249 .010288 .0000000 | —. 023225 . 008589 0000000 | —.019828 L005866 | —.0000000 | —.014382
. 3013249 . 014968 .0000000 | —.031826 L0I3164 | —.0000000 | —.028217 LO10266 | —.0000000 | —.022421
. 4113249 019425 .0000000 | —.040108 017535 | —.0000000 | —.036327 014493 | —.0000000 | —.030244
.4313249 . 023650 0000000 | —.048055 021692 | —.0000000 | —.044130 .018538 | —.0000000 | —.037830
. 4513249 027634 | —.0000000 | —.055647 .025626 | —.0000000 | —.051631 L022388 | —.0000000 | —.045156
4713249 L031364 | —.0000000 | —.062850 .029323 | —.0000000 | —.058778 026031 | —.0000000 | —.052194
. 4913249 (034826 | —.0000000 | —. 069664 032770 | —.0000000 | —.005553 020452 | ~.0000000 | —.058917
. 5113249 1038006 | —.0000000 | —.G76033 .035951 | —.0000000 | —.071923 032635 | —.0000000 | —.065291
. 5313249 040886 | —.0000000 | —.081930 038849 | —.0000000 | —.077855 035562 | —.0000000 | —.071281
. 5513249 043447 | —.0000000 | —.087316 .041444 | —.0000000 | —.083308 038213 | —.0000000 | —.076847
L 5713240 45666 | —.0000000 | —.092070 L043712 | ~.0000000 | —.088160 .040565 | —.0000000 | —.0R1866
. 5913249 L4TH20 | —.0000000 | —.096374 .045630 | —.0000000 | —.092595 .042593 | —.0000000 | —. 086521
.6113249 048079 | —.0000000 | —.099940 L47170 | —.0000000 | —.096323 044271 | —.0000000 | —. 090524
. 6313249 050012 | —.0000000 | —.102784 048301 | —.0000000 | —,099361 045565 | —.0000000 | —.093890
. 6513249 050585 | —.0000000 | —.104833 .048086 | —.0000000 | —.101636 .046442 | —.0000000 | —.096548
. 6713249 050655 | —.0000000 | —, 106006 049186 | —.0000000 | —.103068 046860 | —.0000000 | —.098417
. 6913249 L050177 | —.0000000 | —.106210 048853 | —.0000000 | —.103564 046775 | —.0000000 | —. 099406
. T113249 (49096 | —.0000000 | —.105337 .047936 | —.0000000 | —.103017 .046132 | —.0000000 | —.099410
. 7313249 047350 | —.0000000 | —. 103261 046370 | —.0000000 | —.101303 .044872 | —.0000000 | —.098305
7513249 . 044864 | —.0000000 | —.099835 044084 | — 0000000 | —. 098275 .042021 | —.0000000 | —.095948
7713249 | 041551 | —.0000000 | —.004881 .040990 | —.nooo000 | —.093759 .040193 | —.0000000 | —.o092165
o3240 | Loamsos | — ooo0001 | —ossisr .036982 | —.0000001 | —.087543 L036585 | —.0000001 | —.086749
. 8113249 031989 § —.0000001 | —.079486 .031920 | —.0000001 | —.079366 L031968 | —.0000001 | —. 079443
.R313249 025441 | —.0000001 | —.068446 025667 | —.0000001 ;| —.068598 L026179 | —.0000001 | —.069922
. 8513240 L017442 | —.0000002 | —. 054332 017981 | —.0000002 | —. 055711 L019008 | —.0000002 | —.057765
. 8713240 007697 | —.0000004 | —. 037456 L008581 | —.0000004 | —.039224 LO10171 | —.0000004 | —.042403
. 8913249 —.004208 | —.0000007 | —.016085 —.002041 | —.0000007 | —.018619 —.000736 | —.0000007 | —.023030
.9113249 —.018905 | —.0DDO015 .010739 —.017207 | —.0000014 . 007345 —.014321 | —.0000014 . 001572
. 9313249 —.037437 | —.0000035 . 045108 —.035245 | —.0000034 040724 —.031504 | —. 0000034 .033421
. 9513249 —.OGIRI5 | —.0000096 . 091038 —.059026 | —.0000101 085461 —.054400 | —.0000099 . 076389
.9713249 —.097063 | —.0000446 L 158583 —.093466 | —. 0000433 .151389 —.087834 | —.0000426 140124 |
. 9913249 —.164899 | —.0005193 291174 —. 157350 | —.0005067 . 276077
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